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ABSTRACT:  Low-head dams are small structures that are built for many purposes, the most 

common being to impound small amounts of water for various uses.  At certain flow conditions, 

a dangerous countercurrent, known as a roller, can form downstream of a low-head dam.  This 

current possesses an upstream directed surface velocity that can effectively trap debris, as well as 

unsuspecting humans, at the downstream side of the dam.  It is this current that is responsible for 

the deaths of many individuals that have ventured too close to these structures over the years.  It 

is the objective of this study to identify a relationship between easily observable parameters and 

the roller strength that can be used as a classification system.  This will be done primarily 

through the use of computational fluid dynamics software to simulate various flow conditions.  

The results of these numerical models will then be compared, and a relationship will be 

identified.  This study is currently underway, and therefore conclusive results are not available at 

this time.  Although, comparison of the numerical results to physical model results have been 

used to verify that the flow conditions being produced by the software accurately represent the 

physical flow conditions.   

 
Keywords: low-head dam, drowning machine. 

INTRODUCTION 

Low-head dams have been constructed historically to serve a wide variety of purposes.  Some are 

meant to impound small volumes of water to be used for irrigation and cooling of power plants, 

supply water to municipalities and industry, and simply to provide for recreational activities.  

Others are in place to house and protect utility lines at river crossings.  Some are built to enhance 

water quality downstream through the entrainment of air into the water.  They can take many 

different forms, with the most common being the flat-topped and the ogee crested weir. 

 As water flows over a low-head dam or drop structure in a mildly sloped channel, the 
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flow regime smoothly transitions from subcritical to supercritical.  As it continues past the dam, 

the flow must eventually return to subcritical flow at a distance downstream depending on the 

slope of the channel and the tailwater conditions.  A transition from supercritical to subcritical 

flow is not a smooth one as it is when going in the opposite direction.  Instead, a hydraulic jump 

is formed where the transition takes place, with the purpose of dissipating the excess energy 

possessed by the high velocity supercritical flow.    

 When flow conditions at a low-head dam cause the hydraulic jump to be submerged, a 

strong current can be formed at the downstream face of the dam that features a characteristic 

upstream directed surface velocity.  This current, which is commonly referred to as a “hydraulic” 

by recreational water users or “roller” by the engineering community, can often catch debris and 

hold it near the face of the dam for long periods of time.  Occasionally, an unsuspecting person 

can get too close to one of these structures and find themselves incapable of escaping the 

relentless current, often struggling to the point of exhaustion and ultimately drowning before 

being rescued. 

 Several studies have been performed on the subject of low-head dams, primarily focusing 

on the dangerous hydraulic conditions and possible remediation techniques that have been 

proposed.  Some of the more significant studies include those performed by LEUTHEUSSER 

(1988), LEUTHEUSSER and BIRK (1991), HOTCHKISS and COMSTOCK (1992), and 

LEUTHEUSSER and FAN (2001).  These studies have done an excellent job of identifying the 

dangerous flow patterns created at low-head dams and suggesting possible solutions to the 

problem, although it seems little has been done when it comes to classifying the hazards present 

based on easily obtainable parameters. 

   In their study, LEUTHEUSSER and FAN (2001) utilize a submergence factor (S) 

of the hydraulic jump to identify key transition points in the formation of the roller.  This 

submergence factor, as presented in Eq (1), requires the depth of the subcritical sequent depth of 

the optimum hydraulic jump (Y2), which can be difficult to determine.  Y4 in Eq. (1) is the 

downstream tailwater depth.    
  

 𝑆 =    !!!!!
!!

 (1) 
  

This study aims to identify a relationship between easily observable and measurable 

parameters that will allow low-head dams to be classified according to the danger encountered 
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by the public.  This classification system would help recreational water users and dam owners 

alike assess hazards and act appropriately in terms of safety and liability. 

 

RESEARCH OBJECTIVES AND METHODOLOGY 

This study, which is currently underway at the Utah Water Research Laboratory (UWRL) in 

Logan, Utah, will use the computational fluid dynamics (CFD) software Flow-3D™ to 

numerically model flow over low-head dams at various flow conditions.  Two dam shapes are 

being examined as a part of this research: the flat topped weir and the ogee crested weir.  Dam 

heights (𝑃) being tested are 0.61 m, 1.52 m, and 3.05 m, with varying upstream and downstream 

water depths.   

The setup of the numerical models in Flow-3D™ will be identical besides the upstream water 

depth (ℎ!) and downstream water depth (ℎ!).  Simulations are being run in series, with a single 

series consisting of a particular dam size and ℎ!  held constant, while ℎ!  is increased 

incrementally in each simulation.  Once a series of simulations has been completed, a new series 

is set up using a different value of ℎ!.  

The boundary conditions of the computational domain used will model actual flow conditions 

at a low-head dam as closely as possible, and will be kept the same for each simulation.  The 

mesh boundaries will be set as follows: 

• Upstream boundary (𝑋!"#):  Specified pressure boundary with a stagnation pressure 

set to zero and specified fluid height 

• Downstream boundary (𝑋!"# ):  Specified pressure boundary with a stagnation 

pressure set to zero and specified fluid height 

• Bottom boundary (𝑍!"#):  Wall boundary (no slip) 

• Top boundary (𝑍!"#):  Symmetry boundary (no influence on model due to open 

channel) 

• Side boundaries (𝑌!"# and 𝑌!"#):  Wall boundaries (no slip)  

Once a numerical simulation has been completed, the flow rate, minimum surface velocity in 

the direction of flow (negative being upstream directed), water surface elevations at a distance of 

2P upstream and 3P downstream from the upstream face of the dam, and Froude Numbers at 

these same locations are extracted from the results.  A distance of 2P is used for the upstream 
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water depth measurement location to avoid the effects of drawdown as water flows over the dam.  

A distance of 3P will not be used as the downstream measuring location to avoid turbulence 

from the hydraulic jump and the associated error.  These distances will be used as the standard 

for this classification system.  A three-dimensional animation of the simulations will also be 

created from the CFD results.  This animation will show each cell of the computational domain 

represented by color based on the magnitude of the x-velocities.  A definition sketch of the 

numerical model setup and physical model setup of a flat topped weir simulation is shown in 

Figure 1. 

 

Figure1 – Numerical model setup 

 
In order to verify the accuracy of the numerical results obtained through the CFD program, 

physical models of several of the simulations will be built and tested at the UWRL, utilizing a 

gravity fed rectangular laboratory flume (1.83 m x 9.14 m x 1.22 m deep).  The physical models 

will be set up so that the water depths at the specified distances upstream and downstream of the 

dam match those at the same distances in the corresponding CFD models as closely as possible.  

Once these water surface elevations are achieved, a flow meter will be used to measure the flow 

rate.  This flow rate, as well as photos and video of the physical flow, will be compared to the 

numerically obtained flow rates and the CFD animations to verify that the physical process is 

being accurately reproduced by the CFD setup. 

In addition to the verification of the CFD program, the physical model will also be used to test 

the roller’s ability to trap a scaled human model.  The human model was cut out of a sheet of 

high-density polyethylene (HDPE) and modelled to weigh exactly 85.3 kg at a one-fifth scale 

(0.68 kg model scale).  In order to achieve this weight, material was cut out of the chest of the 

human shaped model.  In order for the model to float in the upright position such as a human 

wearing a life jacket, bolts were attached to the ankles of the model and polystyrene foam filled 

the hollowed chest cavity.  These modifications yielded a test subject that floated upright in the 
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water with everything below the shoulders being submerged.  

RESULTS AND DISCUSSION 

Because this study is still underway, data is still being collected and results are not being 

disclosed at this time.  Although there is still much work to do in this study, several pairs of 

numerical and physical models used to verify the CFD setup accuracy have been completed.  The 

results of these tests are shown in Table 1.  Included are the flow rate, Q, upstream water depth, 

ℎ!, and downstream water depth, ℎ!, of both the numerical and physical models tested. Also 

included are the corresponding percent differences between these parameters.    

 

Table 1 – Comparison of CFD results to physical model data 

  
Q (m3/s) hu (m) hd (m) 

Comparison 1 

CFD 0.064 0.686 0.305 
Physical 
Model 0.062 0.686 0.290 

% Difference 3.7% 0 5.3% 

Comparison 2 

CFD 0.064 0.686 0.387 
Physical 
Model 0.062 0.686 0.381 

% Difference 3.7% 0 1.6% 

Comparison 3 

CFD 0.303 0.805 0.677 
Physical 
Model 0.295 0.808 0.649 

% Difference 2.9% 0.4% 4.2% 

 
 

As can be seen from the data in Table 1, the largest percentage difference in flow rates 

between a pair of simulations was 3.7% in both comparison 1 and 2.  The average percent 

differences are as follows: 3.4% in flow rates, 0.13% in ℎ!, and 3.7% in ℎ!.  These small 

discrepancies have been deemed acceptable for this study, and it has therefore been concluded 

that the CFD program and setup being used is accurately replicating physical flow conditions at 

low-head dams.  Figures 2 and 3 show a snapshot of the CFD simulation and a photo of the 

physical model of comparison 2, respectively. 
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Figure 2 – Animation of CFD model from comparison 2 

 

 
Figure 3 – Photo of physical model from comparison 2 

CONCLUSION 

The objective of this research is to increase the understanding of the dangerous hydraulic 

conditions that can be present at low-head dams at certain flow conditions.  It is also hoped that a 

clear relationship between parameters easily measured and obtained in the field and roller 

strength can be identified and used as a classification system.  This type of system would help 

recreational water users and dam owners assess dangers and therefore make better decisions in 

regard to safety and liability.  

Because the study is currently in progress and there is still much data to collect and analyze, 

no conclusions have been made as yet.  The data that has been collected and analyzed up to this 

point shows promising potential for achieving the desired outcomes.   
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LIST OF SYMBOLS 

 ℎ! = Downstream water depth 
 P = Dam height 
 Q = Flow rate 
 𝑆 = Submergence factor 
 𝑌! = Sequent subcritical depth of optimum hydraulic jump 
 𝑌! = Tailwater depth 
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