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Chapter 2 

Catastrophic Slide: Vaiont Landslide, Italy 

2.1 The Landslide  
An impressive double curvature arch dam, 276 m high, was built in the years 
1957 − 1960 to store the waters of the Vaiont River, located in the Italian Alps, 
approximately 80 km north of the city of Venice. The dam was built in a narrow 
canyon, cut by the river in massive Jurassic limestone (Fig. 2.1a). The photograph 
shows, in the foreground, the limestone abutments of the dam and, in the 
background, the steep slope of the left bank of the river, which was actually the 
toe of an ancient landslide. The ancient slide became unstable in October 1963, 
when the level of the reservoir was close to its maximum, and invaded the 
reservoir at great speed. The displaced water generated a gigantic wave, 220 m 
high, which flew over the dam (which stood without bursting) and destroyed 
several villages downstream, causing more than 2,000 casualties. The failure sent 
seismic waves, recorded in seismographs across Europe. 
 

 
 

Figure 2.1 View of Vaiont Dam from downstream: (a) before the catastrophic landslide; 
(b) after the slide (Valdés Díaz-Caneja, 1964). 
 

Figure 2.1b is a view of the left bank of the river after the slide. The dam, in 
the lower part of the photograph, was not directly hit by the slide. A small lake 
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remains between the dam and the toe of the slide. The bridge topping the dam has 
been destroyed. The slide scarp and a newly created lake may be seen in the 
background of the photograph. This catastrophe caused a great impact, which was 
deeply felt by dam and geotechnical engineers around the world.  

A brief account of the events leading to the landslide of the left bank of the 
reservoir is given in the following paragraphs.  

Dedicated geological surveys of the left margin of the reservoir started in 
1958 under the supervision of L. Müller-Salzburg, an expert in rock mechanics. It 
was soon realized that a large proportion of the left bank of the reservoir was in 
fact a very large prehistoric landslide which, sometime in the past, filled the 
Vaiont valley. The valley had been excavated by the river at the end of the last 
glacial period (Würm) (Semenza and Ghirotti, 2000). After this prehistoric 
landslide, the river excavated again a deep valley through the slipped mass. The 
geological history of the landslide, an aspect which is always of interest in 
stability problems, is reviewed later.  

At the end of 1960, once the dam was built and the reservoir partially 
impounded, a long, continuous peripheral crack, 1 m wide and 2.5 km in length, 
marked the contour of a huge mass, creeping towards the reservoir in the northern 
direction (Fig. 2.2). 
 

 
 

Figure 2.2 Map of the Vaiont sliding area. Note the position (and comparative size!) of the 
arch dam on the lower right-hand corner of the figure. (Simplified from Belloni and Stefani 
(1987) (© 1987 with permission from Elsevier) with additional information from several 
authors.) 
 

In the following three years, the downward motion of the slide was monitored 
by means of surface markers. Some of the data provided by them are also plotted 
in Figure 2.2. In addition, water pressures in perforated pipes, located in four 
boreholes (location shown in Fig. 2.2), were monitored, starting in July 1961. The 
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history of rainfall, reservoir level, rate of surface displacement, and water levels in 
piezometers in the four years preceding the failure is shown in Figure 2.3. 
Geophysical campaigns were also performed in December 1959 and 1960. Notice 
also, in Figure 2.3, that two slides of limited size took place during the first partial 
filling of the reservoir in 1960. Project engineers were by that time convinced that 
a large landslide could partially fill the reservoir, isolating the dam from the 
upstream part of the reservoir, and a by-pass tunnel was built in 1961 as a 
precautionary measure. 
 

 
 

Figure 2.3 Relationship between precipitation, reservoir elevation, maximum velocity of 
horizontal surface displacements, and water level in piezometers. (After Hendron and 
Patton (1985), based on a figure by Müller (1964).) 
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However, all the investigation efforts provided limited information on some 
key aspects of the landslide such as the position and shape of the sliding surface 
and the pore water pressures acting on it. The measured rate of displacements of 
surface markers could be roughly correlated with the water level of the reservoir 
(Fig. 2.3). After two cycles of reservoir elevation, which partially filled and 
emptied the reservoir in the period 1960−1962, the water level reached a 
maximum (absolute) elevation of 710 m, at the end of September 1963. At that 
time, the accumulated displacements of surface markers had reached values in 
excess of 2.50−3 m (Fig. 2.4). The figure shows a good correlation between the 
increase in water level in the reservoir and the acceleration of the landslide.  
 

 
 

Figure 2.4 Accumulated displacements of surface markers (W) in the period 1960−1963 
and its correlation with reservoir elevation (LL). Seismic events are marked in the time 
scale (reprinted from Nonveiller, 1987, © 1987, with permission form Elsevier). 
 

Surface velocities of 20−30 cm per day were registered in the days preceding 
the final rapid motion that took place in October 9, 1963. An estimated total 
volume of rock of 6280 10× m3 became unstable, accelerated, and invaded the 
reservoir at an estimated speed of 30 m/s (around 110 km/hour).  

Figure 2.5 is a photograph of the slide taken in 1979. The landslide has filled 
the valley of the Vaiont River, which can be seen in the background. A residual 
lake can be seen in the lower left part of the image. The upper planar sliding plane 
(clear colours) is now exposed. The simplified map in Figure 2.5b, taken from 
Broili (1967), shows the position of the dam (not seen in the photograph), which 
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maintains a small reservoir, the residual lake within the sliding area and the 
contours of the landslide before and after the failure. 

 

 
 

(a) 
 

 
 

(b) 
 

Figure 2.5 (a) Photo of the slide area, taken in 1979 (courtesy of G. Fernández); (b) plan 
view of the area after the slide (Broili, 1967).  
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The Vaiont landslide has attracted world wide attention concerning the causes 
and processes involved in the failure. Interest in Vaiont has never decreased 
within the technical community despite the 47 years that have elapsed since the 
accident. Papers analyzing the failure have been published at a maintained rate in 
journals and conferences. The landslide is one of the largest (in terms of volume 
of mobilized mass) in history. As stated by Hendron and Patton (1987) “It is likely 
that more information has been published and more analyses have been made of 
the Vaiont data than for any other slide in the world”. This chapter and Chapter 5 
are additional contributions to this long list, with the aim of maintaining 
simplicity, but at the same time with the hope of capturing some fundamental 
aspects of the failure. Vaiont has been analyzed by researchers in rock and soil 
mechanics and some specific views of the mechanisms involved in the failure can 
sometimes be traced to the background of the people conducting the analysis. 

One of the main reasons of this interest is the difficulty in explaining the 
extremely high velocity of the moving mass. The implication of this lack of 
understanding is that the risk associated with other landslide occurrences of a 
similar nature (natural slides affected in its toe by increasing water levels, a 
common situation in dam engineering) cannot be properly evaluated.  

The issue of the velocity of the Vaiont landslide will be discussed in Chapter 
5. But before this, the conditions for static equilibrium should be understood. 
Static models, even if they are simple, require an understanding of the main 
geological, geometrical, hydraulic, and geotechnical features of the slide. In the 
case of Vaiont, this information should ideally be extended to the old prehistoric 
landslide, which was reactivated by the reservoir impounding. 

2.2 Geological Setting 
The Vaiont River, which flows from east to west, cuts a large syncline structure 
which folds Jurassic and Cretaceous strata (Fig. 2.6). The syncline created the 
“open chair” shape of the Jurassic strata of the left margin of the river, which can 
also be seen in the figure. The axis of the syncline plunges a few degrees towards 
the east (normal to the plane of the figure). The syncline shape eventually defined 
the geometry of the failure surface, which is always important information for 
understanding the subsequent behaviour of the slide. 
 

 
 

Figure 2.6 North (Monte Toc) to south (Monte Salta) section showing the general layout of 
the syncline, theVaiont gorge and the position of the ancient landslide (after Semenza and 
Ghirotti, 2000).  
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Figure 2.7 Tentative reconstruction of the paleo-slide of Vaiont. 1: Situation before the 
first motion (end of last glaciation?); 2: First motion of the slope; 3: Process of progressive 
sliding (undulated continuous line) and rotational slides at the toe; 4: Successive erosion 
phenomena on the upper parts; 5: Ancient landslide and intense fracturing of strata. The 
valley is invaded by the gigantic slide; 6: The slide before November 4, 1960, after 
thousands of years of erosion. The river has cut a new, narrow gorge; 7: The profile after a 
“small” landslide on November 4, 1960; 8: The final shape of the cross-section after the 
slide of October 8, 1963 (present situation). The inset shows an eroded part of the slide 
surface by the rapidly moving waters displaced by the slide (simplified and adapted from 
Semenza, 2001). 
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E. Semenza, an engineering geologist son of the dam designer, made 
important geological contributions to understand the geology of the site. In his 
book “La storia del Vaiont raccontata del geologo che ha scoperto la frana” (“The 
story of Vaiont told by the geologist who discovered the slide”, Semenza, 2001), 
he includes a tentative reconstruction of the past history of the slide in a series of 
representative cross-sections, which are reproduced in Figure 2.7.  
 

 
(a) 

 

 
(b) 

 

Figure 2.8 Two representative cross-sections of the landslide: (a) Section 2; (b) Section 5 
(see the location in Fig. 2.2). After Hendron and Patton, 1985. The position and length of 
piezometers P1 and P2 are shown on Cross-section 5. 
 

This reconstruction conveys a clear message from a geomechanical point of 
view: the failure surface, which was probably initiated several tens of thousands of 
years ago, has been subjected to an ever-increasing story of accumulated relative 
displacements. The second important point is that the rock mass affected by the 
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1963 landslide had suffered a history of cracking and “damage” during recent 
geological times. The sliding surface is located in strata of the upper Mälm period 
(upper Jurassic). Clays and marls were found in these layers (see the description of 
the failure surface below). Above the sliding surface, finely stratified layers of 
marl and limestone from the Mälm period were identified. Below the sliding 
surface, the Jurassic limestone banks of the Dogger period remained unaffected. In 
the upper part, limestone strata from the lower Cretaceous crowned the moving 
mass. In general, the folded layers of limestone and marl were strongly fractured 
(drilling water was often lost in the exploratory borings performed in 1960).  

Two representative cross-sections of the slide, located upstream of the dam’s 
position at distances of 400 and 600 m, respectively, are reproduced in Figure 2.8 
(Sections 2 and 5; Hendron and Patton, 1985). The two cross-sections will be used 
later to analyze the stability conditions of the landslide. 
 

2.3 The Sliding Surface 
In their comprehensive report of 1985, Hendron and Patton (1985) describe the 
detailed investigation performed to identify the nature of the sliding surface. The 
conclusion is that thin (a few centimetres thick) continuous layers of high 
plasticity clay were consistently found in the position of the failure surface. A 
photograph of the surface is shown in Figure 2.9.  
 

 
 

Figure 2.9 A striated continuous clay layer belonging to the sliding surface (courtesy of G. 
Fernández). 
 

Samples from these clay layers were tested by different laboratories and the 
results are described in Hendron and Patton (1985). The clays were found to be 
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highly plastic (a plasticity chart is given in Fig. 2.10), a result explained by their 
significant Ca-montmorillonite content. Liquid limits well in excess of 50% were 
often found. More recently, Tika and Hutchinson (1999) reported the values wL = 
50% and PI = 22%. 
 

 
 
Figure 2.10 Plasticity of clay samples from the Vaiont sliding surface (Hendron and 
Patton, 1985).  
 

Direct shear tests on remoulded specimens were also reported by Hendron and 
Patton (1985). In some cases, stress reversals were applied in order to find residual 
conditions. In fact, the past history of the landslide indicates that the residual 
friction angle was the relevant strength parameter along the failure surface. 
Measured average values of residual friction angle ranged between 8 and 10 
degrees. These values are consistent with existing correlations between residual 
friction angles and clay plasticity (Lupini et al., 1981). Tika and Hutchinson 
(1999) used the ring shear apparatus to find the residual strength. This test, 
conducted on remoulded specimens, approximates better the large relative shear 
displacements experienced in nature by the actual sliding surface. They also 
measured a residual friction angle of 10 degrees for a relative shear displacement 
in excess of 200 mm (Fig. 2.11a). 

Tika and Hutchinson (1999) also examined the effect of the shearing rate. 
They found (Fig. 2.11b) a further reduction in residual friction which reached low 
values (5º) for shearing rates of 0.1 m/s, a velocity which is still far lower than the 
estimated sliding velocities of the real failure. However, it is a common 
experience that increasing strain rate leads to an increase in the strength of soils. 
More data on the effect of the shearing rate on residual strength is probably 
needed before reaching definite conclusions on this issue. 
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Hendron and Patton (1985) estimate that some factors (areas of the sliding 
surface without clay, some localized shearing across strata, irregularities in the 
geometry of the sliding surface) could increase the average residual friction angle 
operating in the field and they estimate that res′ϕ = 12º is a good approximation for 
static conditions. 
 

 
 

(a) (b) 
 

Figure 2.11 Ring shear tests on a clay specimen from the vicinity of the Vaiont sliding 
surface: (a) static residual friction determined at a shearing rate of 0.0145 mm/min; (b) 
effect of shearing rate (Tika and Hutchinson, 1999). 

2.4 Monitoring Data before the Slide 
Significant monitoring data taken during the three years preceding the failure were 
given in Figures 2.3 and 2.4. The main purpose behind the limited instrumentation 
available was to relate the level of the reservoir with the measured vertical and 
horizontal displacements of a number of topographic marks distributed on the 
slide surface. Data on horizontal displacements, plotted as a function of position 
and time in several profiles following the south-north direction in Figure 2.2, 
suggest that the slide was essentially moving as a rigid body. The direction of the 
slide is also indicated in the figure by several arrows. Some of them (small arrows 
along the peripheral crack) indicate that the moving mass was actually detaching 
from the stable rock, implying no friction resistance along the eastern and western 
boundaries of the slide. 

Seismic (volumetric P-wave) velocities were measured in central parts of the 
slide in December 1959 and again in December 1960. A drop in velocity from vp = 
5−6 km/s in 1959 to vp = 2.5−3 km/s was recorded. This information may be 
interpreted as an indication of the progressive weakening of the rock mass due to 
the distortion induced by the creeping motion of the slide. The velocities initially 
recorded at the end of 1959 are very high and they correspond to a rock of good 
quality (Barton, 2007). This is perhaps surprising in view of the prehistoric 
landslide motions described above. The strong drop in seismic velocity in just one 
year, which is a tiny fraction of time within the complex life of the landslide, 
seems exaggerated but it is pointing towards significant shear distortions within 
the rock mass, motivated by the first impoundment of the reservoir which implied 
a raise of the water level of 200 m (see the history of events in Fig. 2.3). The 
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associated increase in pore water pressures on the sliding surface is very large and 
it is unlikely that past rainfall events could have produced such a strong drop in 
effective stress, especially in the lower part of the slide.  

It should be emphasized that these P-wave velocities are much higher than the 
velocities measured in soils, even if they are dense and compact. In other words, 
the strength that may be associated with the shearing of the rock mass above the 
sliding surface is orders of magnitude larger than the strength available at the clay-
dominated thin layers at the base of the slide, being sheared along sedimentation 
planes of very high continuity.  

2.5 Water Pressures and Rainfall 
The position of piezometers (they were open perforated pipes) was indicated, in 
plan view, in Figure 2.2 and in cross-section in Figure 2.8. A perforated pipe only 
provides information on the average water pressures crossed by the tube. Note too 
that the pipes did not reach the position of the sliding surface. Therefore, they did 
not provide direct information on the water pressures actually existing in the 
vicinity of the sliding surface, which is fundamental information to perform a 
drained stability analysis of the landslide.  
 

 
 

Figure 2.12 Relationship between water level in the reservoir and sliding velocity (courtesy 
of G. Fernández). 
 

In general, the water levels recorded by the piezometers follow closely the 
changing levels of the reservoir (compare Figs. 2.3b and 2.3d). The exception is 
Piezometer 2, at least during the initial part of the recording period. The initial 
readings in this piezometer indicated water pressures significantly above (90 m of 



46 Geomechanics of Failures. Advanced Topics Chapter 2 

water column) the reservoir surface. This information has been interpreted as an 
indication of additional factors, other than the level in the reservoir, which may 
control the water pressure at the sliding surface. Since the cretaceous limestone 
affected by karstic phenomena is a rather pervious mass, rainfall water infiltrating 
at high elevations may result in artesian pore pressures against the impervious 
Mälm formations located at the base of the landslide. Arrows showing the 
circulation of water in Figure 2.6 illustrate this possibility. However, no further 
and direct evidence of this possibility was recorded. On the other hand, the 
simultaneous variation of piezometer and reservoir levels is a good indication of 
the high permeability of the rock mass above the sliding surface. 

When the water level in the reservoir is plotted against the recorded slide 
velocity (Fig. 2.12), an interesting result is obtained. An increasing water level 
leads to an increase in sliding velocity. The relationship is highly nonlinear and it 
tends towards an asymptotic limit, which is an indication of failure. The problem 
with Figure 2.12 is that this relationship is not unique, a result which is not 
expected if the slide motion is thought to be governed by the effective normal 
stresses acting on the sliding surface, which, in turn, are controlled by the 
reservoir level. In fact, the second reservoir filling led to a second asymptotic 
value for the water level in the reservoir.  

This result was probably the main reason behind the decision to increase the 
water level for the third time in search of a higher (but safe) level in the reservoir, 
which would allow the normal operation of the dam. The idea behind this 
decision, apparently put forward by L. Müller, is that the rock reacts in a different 
way when it is wetted for the first time, compared with its reaction when it has 
previously been wetted. There is no fundamental mechanical basis for this 
proposition, however. The fact is that, during the third attempt to raise the water 
level, displacement velocities increased continuously and the final attempts to 
reduce the velocity of the slide, by lowering the level of the reservoir (Fig. 2.3b), 
did not work. 

An explanation for the apparent inconsistency of results in Figure 2.12 could 
be found if the reservoir water level and rainfall are combined in the spirit that the 
prevailing water pressures on the sliding surface, irrespective of their origin, 
should control the stability.  

Hendron and Patton (1985) found a reasonably good explanation if rainfall, 
averaged over the preceding 30 days, and water level are jointly considered to 
explain the landslide velocity (Fig. 2.13). The boundary line between “stable” and 
“unstable” situations, plotted in Figure 2.13, could even provide the equivalent 
reservoir elevation for a given rainfall intensity.  

The actual failure occurred for a 30-day precipitation of 240 mm, when the 
reservoir was at an elevation of 700 m. Leonards (1987) analyzed further the 
rainfall records and the history of reservoir elevation and could not find a 
satisfactory explanation, free of inconsistencies, for the relationship between 
velocities of the slide, reservoir elevation, and previous rainfall. The pore pressure 
regime prevailing at the sliding surface remains rather uncertain in the Vaiont 
landslide. 
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Figure 2.13 Sliding rate related with precipitation (averaged over the preceding 30-day 
period) and reservoir elevation (Hendron and Patton, 1985). 

2.6 A Simple Stability Model 
The two representative cross-sections, 2 and 5 in Figure 2.8, are represented in 
Figure 2.14 in a simplified version, which is, however, close to the original 
drawings. The two plots highlight that the failure surface could be described by 
two planes: a lower horizontal plane daylighting at the river canyon wall and an 
inclined planar surface. A rock wedge whose thickness decreases upwards rests on 
the inclined plane. The rock mass reaches its maximum thickness, 270 m, in the 
central lower part of the slide, above the horizontal sliding plane. 

A good proportion of reported stability analyses of Vaiont, especially in the 
years following the failure, have concentrated on the determination of the friction 
angle necessary for stability (Jaeger, 1965; Nonveiller, 1967; Mencl, 1966; 
Skempton, 1966; Kenney, 1967). Classic procedures for stability analysis in soil 
mechanics using limit equilibrium methods were used. These methods explain the 
instability for friction angles in the range 18 − 28º. The preceding account of the 
relevant information on Vaiont, namely the data presented by Hendron and Patton 
(1985) indicates, however, that the friction angle at the failure surface could 
hardly be larger than 12 degrees.  
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Figure 2.14 Cross-sections 2 and 5 of the Vaiont landslide. Initial geometry.  
 

Two main reasons support this statement: the fact that Vaiont was a case of 
landslide reactivation (which implies large previous shearing displacements at the 
sliding surface and, hence, a clear situation of residual strength conditions) and  
the small residual friction angles (8−10º) measured in the highly plastic clays  
(Ca-montmorillonite rich) associated with the sliding surface. Therefore, a 
relevant question is: are the representative cross-sections in Figure 2.14 stable, 
given the value of the basal friction angle and the estimated conditions of pore  
water pressure, when the reservoir reached elevations in the range of 650 to  
700 m? 

The cross-sections plotted in Figure 2.14 suggest that the slide may be defined 
as two interacting wedges: an upper one (Wedge 1) sliding on a plane having a dip 
of 36−37º and a lower one (Wedge 2) sliding on a horizontal plane. Since a 
(common) friction angle of 12 degrees is acting at the basal sliding surfaces, the 
upper wedge is intrinsically unstable and will push the lower resisting wedge. The 
weights of the two wedges and the distribution of pore water pressures prevailing 
on the sliding plane will, as a first approximation, dictate the stability conditions. 
However, the interaction between the two wedges also plays a relevant role in 
explaining the stability, as discussed below.  

2.6.1 Kinematics of the slide 
It is worth at this point to examine the kinematics of the slide. If the motion starts, 
one may imagine the slide as a train sliding downwards, an image which is 
brought to justify that the absolute velocity in the upper and lower parts of the 
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slide are essentially the same. Surveying data plotted in Figure 2.2 support this 
simple hypothesis, which is to be expected in the reactivation of an old landslide. 
The difference in velocity (or displacement) when comparing the upper and lower 
parts of the slide obviously lies in the direction of these vectors: they will be 
parallel to the underlying failure surface. A conflict arises, however, at the kink or 
junction between the two sliding planes. Within the train analogy, if the wagon 
passing over this kink is to maintain contact with the kinked rail, it will be bent 
and sheared. It is hard to imagine that voids will develop in the layered sequence 
of marl and limestone at 270 m depth. The alternative is the bending and shearing 
of strata. In fact, a single shearing plane may be invoked to accommodate the 
sudden change in the direction of velocity at the kink. This is indicated in Figure 
2.15, where sliding velocity vectors v1 (in the direction of the upper inclined 
surface) and v2 (horizontal, parallel to the basal plane) are plotted with a common 
origin. This velocity diagram represents the conditions at the kink (point A), 
where the rock approaches A with velocity v1 and leaves it with velocity v2. Since 
the absolute velocity of the two wedges is the same, the relative motion of the two 
wedges (vector v12) is directed in the direction of the bisector of the angle between 
the upper and lower sliding surfaces. Therefore, a change in the direction of the 
velocities of the two wedges may be accommodated by a relative shear in the 
direction of the bisector plane, plotted in Figure 2.14.  
 

 
 

Figure 2.15 Kinematics of sliding. Section 5.  
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The motion of the slide implies that the (unstable) mass from the upper wedge 
becomes the (stable) mass of the lower wedge. In this process, the sliding 
resistance along the common plane separating the two wedges has to be overcome. 
If it is accepted, because of the preceding discussion, that the common plane of 
intense shear bounding the two wedges is the bisector plane (Fig. 2.15), the 
evolution of the geometry of the sliding mass may be approximated by the 
successive cross-sections shown in Figure 2.15 for total slide displacements s = 0 
m, s = 100 m and s = 400 m. Figure 2.15 is a graphic expression of the condition 
of mass conservation during landslide motion. It will be used later to perform a 
dynamic analysis of the failure.  
 

 
 

Figure 2.16 Two-block model of the Vaiont slide: (a) definition of geometry and forces 
(initial stage); (b) the slide after a displacement s. 

2.6.2 Two-block model 
Consider in Figure 2.16, the “unstable” and “stable” blocks mentioned before in a 
very simple representation: two solid blocks connected by double hinged bar 
normal to the bisector plane. The interaction between the two blocks is simply 
given by a force, Fi. Note that this force introduces normal and shear forces on the 
common plane between the two blocks. The lower block is partially submerged 
and the level of water has a height hw with respect to the lower horizontal sliding 
plane. The upper block is not affected by water. 

The sketch in Figure 2.16a provides a definition of forces acting on each 
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block. A simple problem is defined as follows: find the angle of basal shearing 
resistance for equilibrium. This is an elementary problem in mechanics which is 
solved by expressing equilibrium of forces for each block and then forcing a 
common value for the interaction between the two blocks. Static equilibrium 
expressions (normal and parallel to the direction of sliding) are written as follows, 
in terms of effective stresses: 

- Upper block 1: 

 1 1cos sin( / 2) ,iW F Nα + α =  (2.1a) 

 1 1sin cos( / 2),iW T Fα = + α  (2.1b) 

 1 1 tan bT N ′= ϕ , (2.1c) 

since no water is acting on the upper sliding block, 1 1N N ′= . 
- Lower block 2: 

 2 2 2sin( / 2) ,i wW F N P′+ α = +  (2.2a) 

 2cos( / 2) ,iF Tα =  (2.2b) 

 2 2 tan ,bT N ′ ′= ϕ  (2.2c) 

where tan b′ϕ  is the effective friction coefficient on the sliding planes. 
Isolating Fi in (2.1) and (2.2), respectively, and making them equal, results in 

 1 2 2(sin cos tan ) ( ) tan
sin( / 2) tan cos( / 2) cos( / 2) tan sin( / 2)

b w b

b b

W W P′ ′α − α ϕ − ϕ
=

′ ′α ϕ + α α − ϕ α
, (2.3) 

which is a second-order algebraic equation for tan b′ϕ . The volumes of blocks 1 
and 2 are estimated as follows for Section 5: V10 = 112,590 m3/m and V20 = 93,000 
m3/m, where the subscript 0 indicates initial value (no displacement of the slide). 
The indicated volumes correspond to a landslide “slice”, one meter thick.  
The value of Pw2 may be calculated as Pw2 = L20hw if a length for Block 2 is 
estimated. The length of the basal horizontal plane in Figures 2.14 or 2.15 is L20 = 
560 m. Finally, a specific weight, γr = 23.5 kN/m3 was taken for the rock in order 
to compute the weights of the blocks. Accepting these values, the following 
friction angles are derived for Cross-section 5 (α = 37º): 

 b′ϕ = 21.1º for hw = 120 m, 

 b′ϕ = 19.4º for hw = 60 m. 

The lower horizontal plane in Section 5 is approximately at elevation 590 m 
(Fig. 2.13) and the maximum reservoir level attained was 710 m (Fig. 2.3). 
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Therefore, the first case defines the maximum water pressure experienced by the 
lower block before the failure. Slide displacements (which, in practice, are 
interpreted as a condition of strict static equilibrium) were also recorded at lower 
water elevations (hw = 60 m, which corresponds to the situation in November 
1960, see Fig. 2.3). However, the actual pore water pressure is also controlled by 
the rainfall regime, as previously discussed, and uncertainties remain on the actual 
value of the operating pore water pressures against the sliding surface.  

Despite its simplicity, the block model provides some hints on the effect of 
water level and slide displacement on safety factor. If b′ϕ = 21.1º is taken as the 
real effective friction angle along the failure surface, the safety factor, F, is 
defined as 

 
mob

tan(21.1º ) ,
tan( )

F =
′ϕ

 

where mob′ϕ  is the “mobilized” friction angle, i.e. the friction angle that ensures 
strict equilibrium for another situation of the slide and, in particular, for changing 
water levels in the reservoir. Values of mob′ϕ  were calculated through Equation 
(2.3) for different values of hw and the calculated safety factor is plotted in Figure 
2.17a. The explanation of this figure is straightforward: as water level increases, it 
reduces the effective weight of the lower block, (W2 – Pw2), and the friction 
required for equilibrium has to increase. Note, however, that the upper block is not 
affected by the water level in this simplified model, a situation that may change in 
other cases. In Vaiont, as shown later, the maximum reservoir level introduces 
pore water pressures in the lower part of the upper wedge. It should be added that 
the trend shown in Figure 2.17a (decreasing safety factor as the water level 
increases) is not a general result for other slide geometries and stronger changes in 
water elevation.  

The effect of changing geometry as the slide is set in motion, may be also 
analyzed. Figure 2.16b includes a proposal to transfer mass from the upper block 
to the lower one. It is a rough approximation to the more refined model sketched 
in Figure 2.15. It simply states that the current weights of the two blocks, for a 
slide displacement s is given by 

 1 10 1 ,rW W e s= − γ  (2.4a) 

 2 20 1 ,rW W e s= + γ  (2.4b) 

where e1 is the thickness of the upper block (V10 = L10e1; for Section 5, L10 = 700 
m and the volume of the upper block is V10 = 112,590 m3/m; therefore, e1 = 160.8 
m). In addition, the water uplift under block 2 is calculated as Pw2 = (L20 + s)hw. 

Equation (2.3) provides again the value of mob′ϕ  for the current weights, and 
therefore safety factors may be found for increasing slide displacements. They are 
plotted in Figure 2.17b, for Cross-section 5. The result is to be expected: the 
moving slide becomes progressively more stable because the lower stabilizing 
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weight increases at the expense of the upper unstable block whose mass is 
continuously decreasing.  
 

 
 

(a) 
 

 
 

(b) 
 

Figure 2.17 Two-block model. Effect of (a) water level – for zero displacement – and (b) 
slide displacement − for hw = 120 m – on safety factor. Section 5.  

 
Unfortunately, the real behaviour of Vaiont was totally different: it 

accelerated downwards despite the prediction of the simple two-block model. 
Somehow, the resisting forces had to decrease substantially in order to transform a 
self-stabilizing mechanism (the two-block model) into an increasingly unstable 
mass, able to accelerate. 

The two-block model has a further limitation: the effective friction angle for 
equilibrium ( b′ϕ  = 21.1º for hw = 120 m or b′ϕ  = 19.4º for hw = 60 m, both in 
Cross-section 5; the “small” difference is non-relevant here) is far higher than the 
residual friction angle, res′ϕ  = 12º, which is the most likely value as justified 
above. This is an inconsistent result which indicates that the simple two-block 
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model is too crude to represent the actual conditions of the Vaiont slide (equally 
inconsistent results are obtained for Cross-section 2).  

The next step will be to remove some of the limitations of the simple two-
block model in order to approximate more realistically the sliding conditions 
summarized in Figure 2.15. 

2.6.3 Two interacting wedges 
Shearing across the common plane AB between the upper and lower wedges (Fig. 
2.15) has a direction approximately perpendicular to the sedimentation planes of 
marls and limestones of the Mälm period overlying the failure surface. The shear 
resistance offered by plane AB is difficult to estimate because of the intricate 
geometry involved at several scales and the limited continuity of joints. Some 
researchers in rock mechanics, notably E. Hoek, have made efforts to provide an 
answer to this difficult problem from a practical perspective. An account of 
Hoek’s work may be found in the rock mechanics textbook (Hoek, 2007). 

Following Hoek, the strength of rock masses may be approximated if some 
basic characteristics are determined (rock matrix unconfined strength; degree of 
jointing and state of the surfaces, lithology, etc.). As an example, Figure 2.18 
shows the strength envelope in a Mohr stress plane for a rock mass that may 
approximate the Mälm layers above the sliding surface of Vaiont. The envelope 
was defined using the free access “virtual laboratory” found on the preceding web 
page. Details of the defined rock mass are given in the caption of Figure 2.18. It 
may correspond to the Vaiont rock mass, which was described as follows by 
Müller (1987), after the failure: 

“The part of the stratigraphic column exposed in the slide mass consists of 
beds of partially crystalline limestones, limestones with hard siliceous inclusions, 
marly limestones, and marls. Many beds are strongly folded and show indications 
of slope tectonics. Its geological structure and also its geological sequence has 
remained essentially unchanged. The entire rock mass remained intact and the 
sediment facies is nearly unchanged. Apart from some newly formed faults, the 
only other effects of the slide were the opening of existing joints and the 
development of new joints, resulting in an overall volume increase of 4 − 6% and 
an associated reduction of the mechanical coherence of the rock mass.” 

The strength envelope is nonlinear but a Mohr − Coulomb approximation is 
also shown in Figure 2.18 for a range of normal stresses centered at n′σ  = 2 MPa, 
a stress which may represent average conditions on the bisector plane AB (Fig. 
2.15). The Mohr − Coulomb strength parameters ( rc′ = 0.787 MPa; r′ϕ  = 38.5º) 
define the linear Mohr − Coulomb approximation in Figure 2.18.  

The relevant point is that the shear plane AB may offer a substantial resistance 
to be sheared and this resistance probably has a significant role in stability. 
Shearing across a rock mass is typically associated with the release of energy. In 
fact, in the years preceding the failure, when three attempts to fill the reservoir 
were made, seismic events were recorded on the slide surface. Their location is 
plotted in Figure 2.2. They approximately span, in plan view, the position of the 
shear plane AB plotted in Figure 2.15. Nonveiller (1987), quoting a report on 
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these shocks mentions that “[…] the shocks generated in the zone of the slide 
signify dilation of the material in a zone of sagging of the rock”. 

These events had an increasing frequency in periods of slide acceleration, 
when the reservoir level increased. This is shown in Figure 2.4, where seismic 
events are plotted as small marks on the time axis (lower part of the figure).  

It was also reported that the rock experienced a global degradation, reflected 
in a substantial drop of P-wave velocities, as a result of the slide motion during the 
period December 1959−December 1960. All this evidence supports the conclusion 
that a rock mass around the position of the ideal shear plane AB was subjected to 
intense shearing during the cycles of filling and emptying the reservoir in the 
years previous to the failure.  
 

 
 

Figure 2.18 Strength envelope of a rock mass described as: strength of intact material: 50 
MPa (limestone-claystone); Hoek Geological Strength Index (GSI = 50) (very blocky, 
interlocked, and partially disturbed, with multifaceted angular blocks formed by four or 
more joint sets), Hoek mi parameter mi = 9 (marls, soft limestones); degradation parameter 
D = 0.5 (in a scale 0 to 1) (according to the Hoek − Brown classification of rock masses; 
see www.rocscience.com). Also shown is the Mohr − Coulomb approximation for a normal 
stress of 2 MPa ( rc′ = 0.787 MPa, r′ϕ = 38.5º) and an arrow showing the degradation of 
cohesive intercept at constant r′ϕ  value. 
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A loss of strength (reduction of mechanical coherence in Müller’s words) was 
certainly a consequence of this straining. Typically, cohesion is first lost but 
friction tends to remain without much change. This drop of cohesion as a result of 
straining along plane AB was shown in Figure 2.18. In the model described below, 
the apparent cohesion in the shear plane AB will be reduced as the slide moves 
forward.  

Going back again to Figure 2.15, as slide displacement increases, “new” 
planes of rock cross the shearing position AB that remains fixed at the position of 
the bisector plane, which is independent of the slide motion. The consequence is 
that the shear strength along this plane will not decrease in a sudden and intense 
manner. Certainly, the motion of the slide will have some weakening effect, which 
is difficult to quantify. Finally, to complicate matters, progressive failure 
mechanisms along AB are to be expected in view of the brittle nature of rock 
strength, a phenomenon which will not be considered here but is mentioned 
because it will tend to partially destroy the strength available along shear plane 
AB.  

A model based on the interaction of two wedges will now be developed. The 
main assumptions are: 

- The upper and lower wedges change their geometry during sliding, as 
shown in Figure 2.15. The upper wedge looses mass which is added to the 
lower one.  

- During the movement, the common plane AB reduces in length. Shearing 
across this plane (or, more generally, AB′ ) is described by a Mohr-
Coulomb strength criterion ( tanr rc′ ′ ′τ = + σ ϕ ). In addition, the cohesive 
intercept, rc′ , is made dependent on slide displacement, s. This is a 
simplified procedure to introduce strength degradation of the rock mass 
during the slide motion. The friction angle is maintained constant. 

- The lower sliding surface is assumed to be in residual conditions with 
strength parameters (c′ = 0; b′ϕ = 12º). 

- Pore water pressures are given by a horizontal phreatic level.  
- Equilibrium conditions are formulated in dynamic terms. In this way, it 

will be possible to analyze the effect of strength degradation of shearing 
plane AB′ on slide motion. Static conditions of equilibrium are a particular 
case of the dynamic case. Only inertia terms are considered. No viscous 
effects are introduced.  

The analysis follows the general procedure advanced before when considering 
the two hinged blocks but now dynamic equilibrium is fomulated: Newton’s 
Second Law will be written for the upper and lower wedge, and a common 
interaction force across plane AB will be enforced. Newton’s second law for a 
solid body motion states that the derivative of the solid momentum (mass times 
velocity) is balanced by the sum of forces acting on the body. Note that the mass 
of each wedge depends on displacement and therefore the term of time variation 
of mass can not be simplified when the time derivative of momentum is 
developed.  
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Figure 2.19 Geometry and forces on the upper wedge (1).  
 
Upper Wedge (1) 
 

Consider the wedge geometry and external forces in Figure 2.19. Dynamic 
equilibrium parallel to the motion (displacement s; velocity v = ds/dt) reads 

( )1
1 1 int int int

d
sin cos( / 2) sin( / 2) cos( / 2) ,

dw

M v
W T N Q P

t
′α − − α − α − α =  (2.5) 

where M1 is the mass of Wedge 1, (W1 = M1g; g: gravity acceleration). The time 
derivative of the right-hand side of Equation (2.5) can be developed as 

 
( )1 1

1

d dd
d d d
M v MvM v

t t t
= +  (2.6) 

Equilibrium in normal direction to the basal sliding plane: 

 1 1 int int 1 intcos sin( / 2) cos( / 2) sin( / 2) 0w wW N N Q P P′ ′α − + α − α − + α =  (2.7) 

where the interaction forces Qint and intN ′ are related through 

 int int' tan .r rQ c AB N′ ′ ′= + ϕ  (2.8) 

In addition, the shear resistance on the base of the wedge is given by 

 1 1 tan .bT N ′ ′= ϕ  (2.9) 

The motion Equation (2.5), in view of (2.7), (2.8), and (2.9), becomes 

 
( )1

1 1 int 2 3 int 4 1

d
' tan ,

dr w w b

M v
W s N s c AB s P s P

t
′ ′ ′− + − + ϕ =  (2.10) 
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where is are trigonometric constants, given by 

 1 sin tan cos ,bs ′= α − ϕ α  (2.11a) 

 2 tan sin( / 2) cos( / 2) tan tan
cos( / 2) sin( / 2) tan ,
b r b

r

s ′ ′ ′= ϕ α − α ϕ ϕ +
′α + α ϕ

 (2.11b) 

 3 tan cos( / 2) sin( / 2),bs ′= ϕ α − α  (2.11c) 

 4 tan sin( / 2) cos( / 2).bs ′= ϕ α + α  (2.11d) 

The effective interaction normal force, at this stage unknown, can be isolated from 
Equation (2.10): 

 
( )1

int 1 1 3 int 4 1
2

d1 ' tan .
dr w w b

M v
N W s c AB s P s P

s t
⎛ ⎞

′ ′ ′= + − + ϕ −⎜ ⎟
⎝ ⎠

 (2.12) 

 When the wedge slides a distance s along the basal plane, the length of the 
shear plane reduces from AB to BA ′  (Fig. 2.19). Since triangles AVB and 
AV B′ ′ are similar, it is easy to find  

 0 1

0

/ cos
'

/ cos cos( / 2)
L s H

AB
L

α −
=

α α
, (2.13) 

where H1 is the initial thickness of the lower wedge over the sliding plane (Fig. 
2.19).  

The volume of Wedge 1 can be expressed as a function of the initial 
geometric parameters and the displacement s as 

  (2.14) 

The mass and weight of the wedge can be now easily calculated by multiplying 
the volume of Equation 2.14 by the density ( rδ ) and unit weight ( rγ ) of the rock, 
respectively. 
Time variation of mass can be obtained as follow: 

  

where the time variation of the displacement ( d
d
s
t

) is equal to the velocity v.  

Lower wedge (2) 
 

The wedge geometry and external forces are given in Figure 2.20. The wedge is 

2
0 1

Wedge 1
0

1 cos
2 cos cos( / 2)

L HV s
L

α⎛ ⎞= −⎜ ⎟α α⎝ ⎠
 

 

Wedge 1 01 1

0

dd cos d ,
d d cos cos( / 2) dr r

V LM H ss
t t L t

α⎛ ⎞= δ = −δ −⎜ ⎟α α⎝ ⎠
  (2.15) 
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shown displaced forward at distance s. 
 

 
 

Figure 2.20 Geometry and forces on the lower wedge (2).  
 
Dynamic equilibrium parallel to the direction of motion at a velocity v = ds/dt 
reads 

 
( )2

int int 2

d
cos( / 2) sin( / 2) ,

d
M v

N Q T
t

′ α − α − =  (2.16) 

where M2 is the mass of Wedge 2 (W2 = M2 g; g: gravity acceleration). Note that 
the horizontal components of the water pressure forces Pwint and Pwf acting on the 
slope surface are equal and opposite in sign. The terms on the right-hand side of 
the Equation (2.16) can be developed following Equation (2.6) and, since the total 
mass of the slide is constant, the time variation of M2 will be equal to the time 
variation of M1 indicated in Equation (2.6) but with an opposite sign.  

The base resistance is given by 

 2 2 tan bT N ′ ′= ϕ . (2.17) 

Taking Equation (2.8) into account, Equation (2.16) becomes 

 
( )2

int 2 int

d
cos( / 2) tan ( ' tan )sin( / 2) .

db r r

M v
N N c AB N

t
′ ′ ′ ′ ′ ′α − ϕ − + ϕ α =  (2.18) 

Equilibrium in a normal direction to the horizontal sliding plane reads: 

 2 2 int int

int 2

sin( / 2) ( ' tan ) cos( / 2)
sin( / 2) 0.

y

r r

w wf w

W N N c AB N
P P P

′ ′ ′ ′ ′− + α + + ϕ α +

α + − =
 (2.19) 

Equation (2.19) provides an expression for 2N ′  which is introduced in Equation 
(2.18). The following expression is then found for the equation of motion in the 
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direction of sliding: 

 
( )2

int 5 6 int 7 2 2

d
' ( ) tan ,

dyr w w wf b

M v
N s c AB s P s P P W

t
′ ′ ′− − + − − ϕ =  (2.20) 

where si are trigonometric constants given by 

 
( ) ( ) ( )

( )
5 cos 2 tan sin 2 cos 2 tan tan

sin 2 tan ,
b r b

r

s ′ ′ ′= α − ϕ α − α ϕ ϕ −

′α ϕ
 (2.21a) 

 ( ) ( )6 tan cos 2 sin 2 ,bs ′= ϕ α + α  (2.21b) 

 ( )7 tan sin 2 .bs ′= ϕ α  (2.21c) 

The effective interaction force between the two wedges is now found from 
Equation (2.20):  

 
( )2

int 6 int 7 2 2
5

d1 ' ( ) tan .
dyr w w wf b

M v
N c AB s P s P P W

s t
⎛ ⎞⎛ ⎞

′ ′ ′= + + − − ϕ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (2.22) 

A single motion equation may be found now if the expressions of intN ′  from 
Equations (2.12) and (2.22) are made equal. Rearranging terms, the following 
equation of motion is derived: 

( ) ( ) ( )
( ) ( )

1 1 5 2 2 2 3 5 2 6 int 4 5 7 2

1 2
1 5 5 2

tan '

d d
tan .

d d

yw wf b r w

w b

W s s W P P s c AB s s s s P s s s s

M v M v
P s s s

t t

′ ′+ − + ϕ + − − + +

′ϕ = +
 (2.23) 

In order to simply the notation, Equation (2.23) can be rewritten introducing new 
trigonometric coefficients ti: 

( ) ( ) ( )1 2
1 1 2 2 2 3 int 4 1 5 5 2

d d
'

d dyw wf r w w

M v M v
W t W P P t c AB t P t P t s s

t t
′+ − + + − + = + (2.24) 

where  1 1 5 ,t s s=  (2.25a) 

  2 2tan ,bt s′= ϕ  (2.25b) 

  3 3 5 2 6 ,t s s s s= −  (2.25c) 

  4 4 5 7 2 ,t s s s s= +  (2.25d) 

  5 5tan .bt s′= ϕ  (2.25e) 
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Under strict static equilibrium conditions, ( ( ) ( )1 2d d d d 0M v t M v t= = ), 
Equation (2.24) could provide, for instance, the value of the apparent effective 
cohesion along shearing plane AB, in terms of the friction angle on AB, r′ϕ , 
wedge weights, pore pressure forces on their boundaries, and geometrical factors:  

 
( )1 1 2 2 2 int 4 1 5

3

.
'

yw wf w w

r

W t W P P t P t P t
c

AB t

− − − + + −
′ =  (2.26) 

The water pressure forces entering the above equations are easily found as follows 

 
2

,
2 tany

w w
wf

h
P
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δ
 (2.27a) 

 2 1 2( ) ,w w wP L L s h= + + γ  (2.27b) 
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2sin

w w
w

h
P
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α
 (2.27c) 

 
2

int .
2cos( / 2)

w w
w

h
P

γ
=

α
 (2.27d) 

Initial (s = 0) wedge volumes, in view of Figures 2.19 and 2.20, are given by 

 0 1
10 2cos

L H
V =

α
, (2.28a) 

 1 2 3
20 12

L L L
V H

+ +
= , (2.28b) 

which allows the calculation of wedge weights. 

2.6.4 Static equilibrium at failure 
Cross-sections 2 and 5 (Fig. 2.14) are characterized by the geometrical parameters 
given in Table 2.1. The upper wedges of Sections 2 and 5 have similar volumes. 
However, the lower wedge of Section 2 has a significantly lower volume than 
Section 5. Therefore, Section 5 is more stable than Section 2, for a common set of 
strength parameters. Conditions for static equilibrium of these two sections will be 
first examined with the help of the set of relationships derived in the previous 
section. Since it has been argued that the residual friction at the basal sliding 
surface is a parameter known with sufficient certainty, the condition of stability 
may be used only to determine the strength parameters on shear plane AB. In fact, 
only combinations of the pair ( rc′ ; r′ϕ ) may be found, since only one condition is 
available: the condition of static equilibrium at the initiation of failure (Eq. 
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(2.26)). 
This is a nonlinear equation relating rc′  and r′ϕ , which has been plotted in 

Figure 2.21 for Sections 2 and 5, assuming b′ϕ  equal to 12º and a rock specific 
weight of 23.5 kN/m3.  

 
Table 2.1 Geometrical parameters of Cross-sections 2 and 5. 

 

 H0 
(m) 

H1 
(m) 

L0 
(m) 

L1 
(m) 

L2 
(m) 

α 
(º) 

δ 
(º) 

V1 
(m3/m) 

V2 
(m3/m) 

Section 2 580 245 750 190 260 37.7 43.3 116142 68149 
Section 5 510 260 700 240 320 36 39.1 112590 93000 

 
Forces Pw (Eq. (2.27)), which provide the effect of water pressures on both 

wedges, should correspond to failure conditions. Since a horizontal water level has 
been assumed and the preceding rain was shown to have a non-negligible effect 
(see Fig. 2.13), all water pressure influence will be associated with the water level 
height above the lower horizontal sliding surface, hw. The plot in Figure 2.13 
provides the estimation of the equivalent value of hw, i.e.: the reservoir water 
level, in the absence of rain in the preceding 30-day period, which explains the 
failure. This height corresponds approximately to the elevation 710 m and, 
therefore, in Section 5 (see Figs. 2.8 or 2.14) it implies a value hw = 120 m. This 
reservoir elevation corresponds, in Section 2, to a water height of hw = 90 m (the 
failure surface daylights at a higher elevation at Section 2; see Figs. 2.8 and 2.14). 
The ( rc′ ; r′ϕ ) values plotted in Figure 2.21 correspond to these two water 
elevations over the lower horizontal sliding plane. 

Section 2 is “more demanding” in terms of required rock strength simply 
because of the relative weight of upper and lower wedges. This situation is 
reflected in the higher strength values required for the equilibrium calculated for 
Section 2 (Fig. 2.21). It is interesting to check that the ( rc′ ; r′ϕ ) combinations in 
Figure 2.21 are in fairly good agreement with the strength expected in rock 
sheared across bedding planes, discussed in 2.6.3. Since the variability of r′ϕ  
values is small compared with the expected variation of cohesive intercepts ( rc′ ), a 
band of expected ( rc′ ; r′ϕ ) pairs, centered around r′ϕ  = 38º−40º has been plotted in 
Figure 2.21 as a reasonable estimation of the rock strength along shear plane AB. 

If Section 5 is taken as a representative cross-section of the slide, the 
following combinations lead to strict equilibrium of Vaiont slide: ( rc′  = 762.3 
kPa; r′ϕ  = 38º); ( rc′  = 564.0 kPa; r′ϕ  = 40º). 

It is also interesting to examine the interaction forces between the two blocks 
and how they change as a function of the available friction on the basal sliding 
plane. Equations (2.12) and (2.22), for zero acceleration, provide this force for the 
two wedges. If Section 5 is selected for the analysis, the variation of intN ′  with the 
base friction angle for two pairs of values ( rc′ ; r′ϕ ) is given in Figure 2.22. It was 
already stated that equilibrium is achieved if the interaction force intN ′  between 
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the upper and lower wedges is forced to have a common value. This condition also 
implies that the shear force, Qint, and therefore the total interaction force are equal.  

 

 
 

Figure 2.21 Strength parameters across shearing plane AB for equilibrium. Sections 2 and 
5. Basal friction: b′ϕ  = 12º. 
 

Figure 2.22 shows how the stabilizing intN ′  force offered by the lower wedge 
increases fast as the friction at the sliding surface, b′ϕ , increases. On the other 
hand, the unbalanced intN ′  force required for the equilibrium of the upper wedge 
decreases as b′ϕ  increases, but at a slower rate. Overall equilibrium is achieved 
when both forces are equal. For strength parameters rc′  = 564.0 kN/m2 and r′ϕ = 
40º equilibrium is achieved for b′ϕ = 12º, a result which has already been found. If 
the strength along the shear plane AB is reduced to rc′ = 0 kN/m2 and r′ϕ  = 35º, 

b′ϕ  has to increase to 14.7º, to reach equilibrium.  
So far, equilibrium conditions have been used to find the mobilized strength 

parameters at failure. The condition of failure, when it is properly identified, 
which means, in particular, that slide geometry and pore water pressure 
distribution are known, is a procedure to find strength parameters or, better, a 
relationship among the strength parameters involved in the model selected to 
perform stability calculations. This procedure, illustrated above, is often described 
as a “back-analysis” of the failure. 

In addition, one may be interested in knowing the safety factor for conditions 
other than failure. For instance, in the case of Vaiont, it makes sense to ask for the 
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safety conditions of the slope before dam impoundment or at some particular 
elevation of the reservoir surface. These questions are addressed in the next 
section.  
 

 
 

Figure 2.22 Effective interaction force, intN ′  between upper and lower wedges. Section 5 
of Vaiont slide. 

2.6.5 Safety factors 
In limit equilibrium methods (the analyses developed before belong to this class of 
methods) the safety factor is defined as the ratio between the available shear 
strength of the soil or rock and the shear stress necessary for strict equilibrium. 
Shear strength and shear stress are calculated on the failure surface. The model of 
two interacting wedges developed in 2.6.3 and 2.6.4 includes two failure surfaces: 
the “basal” surface that bounds the landslide and an internal shear surface (AB). 
which makes it kinematically possible. The nature of both surfaces is quite 
different: the former is located in a high plasticity clay in residual conditions, 
whereas the internal shear surface crosses sedimentary planes, distorts a 
competent rock and exhibits significant strength. However, it is quite possible that 
shear displacements will decrease to some extent the shear strength of this shear 
plane. For a particular situation of the slide (for instance, under natural conditions 
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before dam construction), the two shearing surfaces will most probably not 
mobilize their shear strength in equal proportions. Likewise, if a change in 
external conditions takes place (reservoir impoundment, or rainfall), the available 
strength will not be mobilized at the same time among the two surfaces because 
the shear stiffness of the shearing surfaces and, indeed, of the whole rock mass, 
will also play a significant role.  

Since the problem is complicated, let us accept, to initiate the discussion, that 
two different safety factors, Fb and Fr, are appropriate for the two surfaces. Then, 
the mobilized strength parameters will be defined as follows: 

 mobtan tan ,b b bF′ ′ϕ = ϕ  (2.29a) 

 mobtan tan ,r r rF′ ′ϕ = ϕ  (2.29b) 

 mob .r r rc c F′ ′=  (2.29c) 

A relevant question is to ask for the safety factor, Fr, of the Vaiont slide at the 
beginning of impoundment (i.e., hw = 0), in the hypothesis that the mobilized stress 
at the basal sliding surface remained at residual conditions, b′ϕ  = 12º, (i.e., Fb = 1). 
It is also of interest to know how Fr would change, still under Fb = 1, if the slide 
moves forward following the mechanism described in Figure 2.15.  

Alternatively, one may wish to maintain the classic approach and to find a 
unique and global safety factor, F, for the two situations mentioned, (F = Fb = Fr). 
The two possibilities will be examined here. 

For Cross-section 5, it was found that the following set of strength 
parameters: b′ϕ  = 12º; rc′  = 762.2 kPa; r′ϕ  = 38º leads to failure when hw = 120 
m. If these parameters are accepted as true strength parameters, then the 
equilibrium equations given in 2.6.3 are also valid, for conditions other than 
failure, if the reduced strength parameters (2.29a,b,c) are used instead of the true 
strength values (which are now assumed to be known). In other words, 
equilibrium conditions are now satisfied for the mobilized stresses prevailing at 
the shear surfaces. In fact, mobilized shear stresses are defined as those which 
satisfy equilibrium conditions. Therefore, in view of Equations (2.29), the overall 
equilibrium equation can be used to find the safety factor. However, the 
equilibrium equation will now be a function of Fb and Fr and therefore only one 
safety factor may be determined − either F if it is accepted that F = Fb = Fr , or Fr 
if Fb is fixed, for instance at Fb = 1, or any other alternative. This situation is 
similar to the already discussed determination of strength parameters at failure. 

If the mobilized strength parameters (Eqs. (2.29a,b,c)) are substituted into the 
equilibrium Equation (2.26), the following expression is obtained. 
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where the dependence of the ti expressions on the safety factors has been explicitly 
indicated in the Appendix 2.1. If Equation (2.30) is developed, it turns out to be a 
second-order algebraic equation for Fr (Eq. (A2.4) in the Appendix 2.1), which 
may be solved if Fb is assumed to be known. Details of the solution of Equation 
(2.30) are relegated to Appendix 2.1.  
The safety factor Fr of Section 5 of the Vaiont slide was obtained for: 

- Water pressure conditions prior to failure. As discussed before, pore water-
pressure effects are integrated into the variable hw, the reservoir level over 
the lower horizontal sliding plane. 

- The changing geometry, as the slide moves forward and the water level 
maintains maximum elevation, hw = 120 m. This is a purely static analysis 
performed on different geometries of the slide as it moves forward. The 
dynamics of the motion will be introduced in the next section and it will be 
discussed in more detail in Chapter 5. 

- The effect of hw on safety factor Fr, when Fb = 1, is plotted in Figure 2.23 
(dashed line). The calculated value for hw = 0 (Fr = 1.2) is not particularly 
high and it indicates that the mobilized strength in the rock mass before any 
impounding was quite substantial in order to maintain the slope in 
equilibrium.  

The analysis of the changing geometry, shown in Figure 2.15, leads to the 
safety factor Fr plotted in Figure 2.24 (dashed line). The increase of Fr, again for 
Fb = 1, becomes more pronounced as slide displacement increases. The high 
values calculated for s = 150 m (Fr = 5), indicate that the mobilized resistance 
across shear plane AB is no longer necessary to maintain equilibrium. In fact, 
beyond s = 179 m, the residual friction angle at the main sliding surface is able to 
maintain the slope in equilibrium without any contribution from the sheared rock 
mass across the shear plane AB. 

 

 
 

Figure 2.23 Section 5. Evolution of safety factor, Fr (if Fb = 1; see text) and global safety 
factor, F, when the water level increases in the reservoir. 

 
Let us now consider the determination of a unique global safety factor F. The 

condition F = Fb = Fr has to be introduced in Equation (2.30). The equilibrium 
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Equation (2.30) now becomes a fourth-order polynomial for the unknown F. A 
simple numerical procedure to solve the equation is described in Appendix 2.2. 

Calculated global safety factors, with the help of Equation (A2.10), were 
plotted in Figures 2.23 and 2.24 (continuous line). Computed values of F are now 
significantly lower than the previously reported values of rF .  

One advantage of global safety factors is that geotechnical engineers have 
developed, over the years, a scale of numerical values that helps them to 
approximate the risk of failure. F values of 1.5 and above are generally regarded 
as indicators of a low risk of failure of slopes. A safety factor of 1.2 is probably 
close to the minimum that many would regard as an acceptable situation. Since 
different calculation procedures often result in changes in safety factor of ± 0.1 
for a given slope stability problem, a safety factor of 1.1 conveys a clear message 
of risk.  

However, one should distinguish between design situations and, on the other 
hand, the problem of analyzing an existing slide and its remedial measures. In the 
second case, the evidence of field instability, if properly interpreted, provides a 
robust reference value (F = 1 for failure conditions) which acts as a validation 
benchmark for any method of stability analysis. Then, calculated changes of safety 
factor over the reference situation (F = 1) are significantly more reliable than a 
pure predicting exercise based, for instance, on strength parameters determined in 
the laboratory or on estimated pore water pressures derived from flow 
calculations.  

 
 

Figure 2.24 Section 5; hw = 120 m. Evolution of safety factor, Fr (if Fb = 1; see text) and 
global safety factor, F, with slide displacement.  
 

Vaiont obviously belongs to the second category. Nevertheless, the global 
safety factors calculated for changing water levels within a very large range (0 to 
120 m of water column) (Fig. 2.23) look particularly low (F decreases from F = 
1.07 for hw = 0 m to F = 1 for hw = 120 m). This is certainly a consequence of the 
very large size of the landslide but it also points out that the presence of the 
reservoir implied a relatively minor change in the safety of the slope, always 
within the perspective of risk associated with the classical definition of a global 
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safety factor. Moreover, this result is also an indirect indication that in very large 
landslides, feasible remedial measures are expected to lead to relatively low 
increments of safety factor. 

Figure 2.24 shows that the motion of the slide results in geometries with an 
increasing global safety factor. Given the preceding comments, changes are far 
from being negligible. In fact, displacements of 40, 100, and 150 m imply F 
values of 1.08, 1.22, and 1.36 respectively. (Interestingly, very similar changes 
were computed with the much simpler two-block model, Fig. 2.17b.) The 
increasing sophistication of the model did not change this basic result. 

The relevant question in this case, already stated when discussing the two 
block model results, is to ask for the reasons for the accelerated motion of a 
landslide which seemed to move in a direction of increased stability. This aspect is 
essentially the subject of Chapter 5 but some additional discussion is offered in the 
next section. 

2.6.6 Landslide run out 
Equilibrium conditions, when inertia terms are included, results in the motion 
Equation (2.24). This equation, taking into account Equation (2.6) has the 
following form: 
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where time derivatives of M1 and M2 are known (Eq. (2.15)) and they depend on 
displacement and velocity. The weights (W1 and W2) and the length 'AB  also 
depend on the displacement. Therefore, Equation (2.31) can be written as 

 d ( , ).
d
va f s v
t

= =  (2.32) 

At any given time of the motion, slide acceleration ( d da v t= ) is a function of 
slide displacement, s and velocity, v. Function f also includes information on 
geometry, specific weights, water pressures, and strength parameters. Finding a 
close-form solution for v(t) is a hard task but the structure of (2.32) invites to 
develop a simple numerical algorithm of integration. If the following discrete 
approximation is adopted, the value of the acceleration and the velocity at time (t 
+ 1) can be calculated as 
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 ( )( )1 1, ,i i i i i iv v f s v t t+ += + −  (2.33b) 

which are functions of known values evaluated in time t. In this way, an explicit 
time integration procedure is developed. Reducing 1i it t t+Δ = −  leads to 
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progressively more accurate results.  
Displacements can be estimated from the following expression 

  (2.34a) 

and therefore: 

 ( )1 1 .i i i i is s v t t+ += + −  (2.34b) 

In view of the nature of the problem and the simplicity of the underlying 
mechanical model, it is probably not justified in this case to look for more 
sophisticated integration procedures. The integration algorithm was implemented 
in an Excel calculation sheet. Note that masses, weights and the length 'AB  
should be updated at each time interval since they depend on the displacement.  

It was argued in Section (2.6.3), when developing the model of two 
interacting wedges, that the effective rock cohesive intercept, rc′ , would be 
degraded during shear along plane AB. Since relative shear displacements along 
AB are controlled by displacement s, a simple degradation model will make rc′  
dependent on s. For instance, 

 0 exp( ),r rc c s′ ′= −Γ  (2.35) 

where Γ is a constant (units: length-1) that controls the rate of rock degradation and 
0rc′  is the initial cohesion intercept ( 0rc′  = 768.35 kPa for Cross-section 5, if r′ϕ  = 

38º, and accepting that b′ϕ = 12º). Expression (2.35) was also included in the 
motion equation in order to explore the effect of loss of shear strength on the 
dynamics of the motion. It is not reasonable, however, to expect a strong 
degradation of cohesion along AB′  and the reason is that the rock mass “crosses” 
the plane AB′  during the motion and therefore new – more or less undisturbed − 
rock is continuously sheared across AB.  

Consider the following scenario: in a situation of strict equilibrium (reservoir 
elevation at hw = 120 m in Cross-section 5) the water level is increased by a small 
amount (say hw = 121 m), and it is maintained as constant thereafter. It is desirable 
to find the motion of the slide until a new situation of equilibrium is reached. 
Since the slide improves its static stability conditions as s increases – a result from 
the previous section − it should be expected that the slide will come to rest after 
some displacement.  

relationship between the run out (s) and the velocity on the moving mass (v)) is 
shown in Figure 2.25 for no degradation of the rock strength (Γ = 0). The result 
shows that the slide stops after a displacement of 0.30 m and reaches a maximum 
velocity of 1.7 cm/s. If the water level is increased to hw = 124 m and to hw = 130 
m, maximum displacements and velocities increase as shown in Figure 2.25, but 
the calculated values are far from the actual behaviour of the landslide, which 
reached velocities estimated in 30 m/s, more than two orders of magnitude higher 
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The solution to this problem (which is the solution of Eq. (2.31) plotted as a 
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than the maximum values found in this calculation. 
 

 
 

Figure 2.25 Cross-section 5. Calculated run outs and slide velocities for hw = 121, 124, and 
130 m. No rock strength degradation (Γ = 0). 
 

 
 

Figure 2.26 Assumed loss of effective cohesive strength parameter across shearing plane 
AB with slide displacement, for several values of parameter Γ. 
 

The situation changes if some rock strength degradation is introduced into the 
analysis. 

Figure 2.26 is a plot of Equation (2.35) for a few values of the degradation 
parameter Γ. It will be used as a reference for the results of run-out calculations. 
 Now the scenario is to start the slide motion by increasing the water level (to 
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hw = 121 m) and to accept a certain degradation of the rock during the motion. The 
calculated response of the slide, again in terms of velocity vs. displacement, is 
shown in Figures 2.27 and 2.28. A moderate degradation of the effective strength 
parameter of the rock (Γ = 0.01 m-1, Fig. 2.27) has a limited effect on the 
maximum sliding velocity and on the travelled distance. However, if the 
degradation of rock effective cohesion is more rapid (Γ = 0.1 m-1 and Γ = 1 m-1; 
Fig. 2.28), the slide is able to travel long distances (60−70 m), although the 
maximum velocity does not increase beyond 3 m/s (16.2 km/h) even if a very 
rapid and complete destruction of the rock effective cohesion is imposed (for Γ = 
1¸see Fig. 2.28). Under the more realistic assumption of moderate rock 
degradation, Γ ≤ 1 m-1, the maximum slide velocity is quite small.  
 

 
 

Figure 2.27 Cross-section 5. Calculated run outs and slide velocities for hw = 121 m. Effect 
of rock strength degradation (Γ  = 0 and Γ = 0.01 m-1). 
 

 
 

Figure 2.28 Cross-section 5. Calculated run outs and slide velocities for hw = 121 m. Effect 
of rock strength degradation (Γ = 0.1 and Γ = 1 m-1). 
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In all the cases analyzed, the mechanism leading to stopping the landslide 
motion is the change in geometry of the slide as it moves downwards.  

The dynamic analysis developed here maintains, unanswered, the key 
question of the extremely high velocities reached by the slide. However, it 
indicates that a loss of internal rock strength, associated with the slide motion 
itself, is a potential mechanism to accelerate the slide. 

2.7 Discussion 
The investigations on the past history of the landslide by Semenza (2001), 
synthesized in Figure 2.7, and the work of Hendron and Patton (1987) highlight 
two fundamental aspects: Vaiont was a case of a slide reactivation and the sliding 
surface was located in fairly continuous layers of high plasticity clay. Taken 
together, the implication is that the basal sliding surface could not offer, against a 
new reactivation of the slide (essentially induced by an increase in pore water 
pressures in the lower massive passive wedge of the slide), an effective friction 
angle larger than, say, 10−12º. A good proportion of published back-analysis of 
Vaiont, which use conventional methods of limit equilibrium to find the actual 
friction angle prevailing at the sliding surface at the time of failure is not 
consistent with Vaiont past history. In fact, published back-analyses lead to 
friction angles in the range 18 − 28º (the simple two-block model of 2.6.2 is an 
example in this regard). Vaiont exhibits a safety factor significantly lower than 
one if a friction angle of 10 − 12º (and zero effective cohesion) is used in any of 
the currently available methods of slices. How to address this inconsistency? 

Hendron and Patton (1987) argue that the side friction on the eastern edge of 
the slide provided the necessary resisting force to ensure equilibrium (however, 
some limited information on the direction of the displacements on this border, 
plotted in Fig. 2.2, tends to indicate that the moving mass was detaching from the 
stable rock massif). The alternative explanation developed here is that the 
kinematics of the motion, even in a two-dimensional cross-section, requires the 
relative shearing between the two large rock wedges defining the slide. Leonards 
(1987) also pointed out that the motion of the slide required such a rock shearing 
between the upper and the lower sliding blocks. The estimated shearing strength 
parameters across the common shearing plane are in reasonable agreement with 
the expected mass strength of cretaceous marls and limestones of Vaiont. 

The acceleration of the motion during the catastrophic failure escapes the 
capabilities of the models presented here. A loss of strength is expected when rock 
masses are sheared, due to its inherent brittleness and the complex development of 
strains within the moving mass. “Progressive failure” is the term often used to 
describe these phenomena. The end result is a loss of the cohesive components of 
strength. Such a loss, when imposed on the strength available on the interacting 
shearing plane between the upper and lower wedges, results in an acceleration of 
the slide, which is unable to explain the high velocities reached by the landslide, 
even if a rapid and complete loss of rock cohesion is imposed (Section 2.6.6). 
Therefore, it becomes important to look for additional explanations for the 
apparent loss of strength experienced by the actual slide. If the mechanism of side 
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friction proposed by Hendron and Patton (1985) is accepted as additional resisting 
phenomena, the need for a convincing mechanism for strength loss is even more 
pronounced. The discussion of this fundamental matter will continue in Chapter 5. 

2.8 Lessons Learned 

2.8.1 Slide reactivation 
Ancient slides are rightly regarded as trouble-makers when they are affected by 
engineering works. Past sliding activity is responsible for the reduction of the 
strength available along “dormant” sliding surfaces to minimum values (“residual” 
strengths). In addition, if sliding surfaces are associated with high plasticity clays, 
the residual friction angles are particularly low. Typically, ancient slides in these 
circumstances maintain a low safety factor, which may be rapidly exhausted by 
engineering works. Vaiont is a good example. 

2.8.2 Submerging the slide toe 
Submerging the toe of slopes usually leads to a reduction of stability. The safety 
factor decreases as the water level increases. The reduction is first pronounced but, 
eventually, the negative effect associated with the reduction of effective normal 
stresses on the sliding surface is compensated by the beneficial hydrostatic forces 
acting against the exposed slope(1).  

The safety factor reaches a minimum value for some intermediate water level 
and then increases again to reach values close to the initial safety factor of the 
“aerated” slope. The precise evolution of the safety factor when the reservoir 
water level increases depends also on the particular distribution of pore water 
pressures inside the slope, but a fundamental aspect of this problem is the 
geometry of both the slope and the sliding surface. Three examples are shown in 
Figure 2.29 to illustrate these comments. All of them were solved with a 
commercial slope stability program for soil slopes using the Morgenstern − Price 
method (Morgenstern and Price, 1965). In all cases the distribution of pore 
pressures inside the slide follows a horizontal water table. The first case (Fig. 
2.29a) reproduces the geometry of Vaiont, Section 5. A uniform friction angle, 

′ϕ = 12º (and zero effective cohesion) is assumed. The safety factor reaches a 
minimum for hw/H = 0.5. A similar result is obtained if the lower sliding surface is 
inclined (Fig. 2.29b; now ′ϕ = 15º). However, for a conventional slope (the 
upstream slope of an earthdam) and a critical circular failure surface, the 

                                                           
(1) An alternative explanation can be given in terms of submerged weights. When a lower 
part of the slope is flooded, its effective weight becomes the submerged weight (roughly 
equal to one half of the saturated total weight). Therefore, normal effective stresses on the 
sliding plane are reduced. But the (effective) weight also reduces. This weight has often a 
positive stabilizing effect when it is close to the toe. Therefore, reducing it also decreases 
the safety factor. But, as the water level increases, the upper parts of the slope, which 
contribute with unstabilizing weight, also reduce its effect and the calculated safety factor 
will increase again beyond some critical water level. 
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minimum is reached for hw/H = 0.3.  
 

 

Figure 2.29 Evolution of safety factor (Morgenstern − Price method) when the water level 
in the reservoir increases. hw: water level above the elevation of the exit point of the sliding 
surface. H: maximum value of hw, when the entire slope is submerged. Case (a) geometry 
of Vaiont and (c′ = 0; ′ϕ = 12º); Case (b): geometry modified from Case (a) and (c′ = 0; 

′ϕ  = 15º); Case (c): conventional slope and circular failure surface (c′ = 0; ′ϕ = 30º). 
 
The geometry of Vaiont is especially sensitive to the submergence of the toe, 

because the large toe passive wedge offers an ever decreasing resisting force when 
submerged. This is further illustrated in Figure 2.30, which shows a calculation of 
the global safety factor of Section 5, following the procedure described in 2.6.5. 
The height of the dam prevented hw values higher than 145 m, approximately, in 
Section 5. Unfortunately, Vaiont slide never entered in a zone of increasing 
stability. 
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In conclusion, flooding slope toes is not good practice but it is an unavoidable 
situation in many circumstances, notably in valley slopes affected by dam 
reservoirs. If the initial safety factor is low (this was the case of Vaiont) flooding 
the toe implies trouble ahead. Note also that it takes a substantial water level 
elevation before the trend for lower safety, as the water level increases, is 
reversed. 
 

 
 

Figure 2.30 Variation of global safety factor with height of water above the horizontal 
basal plane. Two-wedge model. Section 5 of Vaiont. 

2.8.3 Interpretation of field data 
Interpretation of sliding risk was essentially made on the basis of reservoir 
elevation and surface displacements. There was also information on rainfall and 
on the levels of four piezometers. The “piezometers” were in fact open tubes 
which did not reach the level of the sliding surface and only provided average 
water pressures prevailing along their length. In addition, no direct information of 
the position of the failure surface and, in particular, on the type of material being 
sheared was available.  

Identification of a landslide for the purposes of estimating its evolution and of 
defining any remedial measure requires information of a few key variables. 
Ideally, these key variables should also be used in the formulation of a mechanical 
model of the motion. In the case of Vaiont, early knowledge of the following data 
concerning the basal failure surface: geometry, pore water pressure, type of 
material, and drained strength parameters would have been fundamental to build a 
conceptual and mechanical model for the slide. This is a first step in understanding 
the problem, not only for Vaiont, but for any landslide. In the case of Vaiont, the 
observation that the slide velocity decreased when the reservoir level was reduced, 
irrespective of the absolute level of the water, provided a reservoir filling criterion 
which, finally led to the failure. In some sense, an “observational method” (2) was 
                                                           
(2) The observational method, described by Peck (1969), requires the following ingredients: 
a) direct observation of a key variable or property describing the essential nature of the 
problem; b) a proper conceptual, analytical or computational model able to provide an 
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applied: the conceptual model was essentially given by the preceding observation, 
illustrated in Figure 2.12. The key variables to be interpreted were the 
displacement rates of surface markers and the reservoir level. The action in mind, 
in case of excessive displacement rate, was to reduce the water level in the 
reservoir. It was accepted, despite this strategy, that a full slide was a likely event 
and that the expected height of the generated wave was even estimated by model 
studies. However, the conceptual model was not based on any mechanical analysis 
of the slide. In addition, the reservoir level did not necessarily provide the actual 
pore pressures on the failure surface and the remedial plans were too simple and 
weakly connected with the complex mechanisms taking place within the slide. 

It should be borne in mind that these comments are made more than 50 years 
after the first investigations started in Vaiont. Their purpose is to learn from the 
case, not to criticize the involved individuals who had to work with the techniques 
and rules of practice available at that time. 

Even today, managing a very large landslide is a daunting task. We are well 
equipped to extract field data (pore water pressures, absolute deformations, “in-
situ” tests) in the first tens of meters of soil and rock. Going beyond 200 m 
requires sophisticated, not easily available, and time-consuming efforts. In 
addition, a very large landslide requires a vast site investigation. It is not a matter 
of only a few borings. Therefore, the difficulties to handle large landslides 
continue to be present and the words of Carlo Semenza, the dam designer, remain 
as a vivid testimony of the formidable challenge he was facing: “[…] things are 
probably bigger than us and there are no adequate practical measures […] After 
so many fortunate works and so many structures […] I am in front of a thing 
which due to its dimensions seems to escape from our hands […]”, (in a letter 
written in April 1961, quoted by Nonveiller, 1987; the full letter in Italian was 
published in Semenza, 2001). 

2.8.4 Computational procedures 
Most of the limiting equilibrium procedures commonly available to the 
geotechnical profession (methods of slices) do not include an internal shearing in 
the moving mass, which is described by strength parameters other than the 
parameters operating on the external bounding failure surface. Moreover, none of 
them may handle processes of stress redistribution induced by progressive failure 
mechanisms. In addition, they have no capability to approximate the initial stress 
state. Continuum models (finite elements) may reproduce better the stress state 
derived from a known history of slope development but modelling progressive 
failure is still a research subject with very little impact on current practice. It has 
to be accepted that, 47 years after the disaster, static methods to estimate the 
stability conditions of the Vaiont landslide still suffer from important limitations. 
To aggravate things, the dynamic behaviour of the slide is still being discussed 

                                                                                                                                     
estimation of the risk, in a general sense, for some threshold values of the key variable(s) 
and c) a plan, defined in advance, to act in a specified manner when threshold values are 
exceeded. 
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and investigated. From a practical point of view, there are no reliable criteria to 
estimate the dynamic reaction of an impending landslide in the case of failure. 
More will be said in Chapter 5 on this aspect 

One has to accept for the time being, by a simple comparison with Vaiont, 
that large landslides exhibiting symptoms of instability, sliding on (high 
plasticity?) clay levels and subjected to a definite reduction of stability conditions, 
may develop unexpected sliding velocities. 

2.8.5 Could it have been avoided? 
This has been a subject of much debate (see Leonards, 1987). It is probably fair to 
say that an improved knowledge of the field situation – based on a more 
comprehensive set of sensors, a detailed geology, and the strength properties of 
the sliding surface − and even a better conceptual and mechanical model of the 
slide would not have provided reliable criteria to stop the motion. Large 
engineering works also convey important pressures to be completed as planned. If 
this was the case of the Vaiont dam, there was probably not a reasonable 
procedure to avoid the slide. In fact, this risk was accepted by the designers, as 
mentioned before. There were also (abandoned) attempts to drain the failure 
surface by means of a drainage tunnel. Its potential effect remains unclear 
especially because the reservoir level marked an unavoidable minimum interstitial 
water pressure, which was already very high. Even if the operating water level of 
the reservoir was substantially reduced (more than 100 m), there remains the risk 
that an exceptional rainfall event (see Fig. 2.13) could have brought the water 
pressures to critical values. Perhaps a combination of a significant (no less than 
100 m) reduction of the maximum reservoir level and an expensive tunnel-based 
drainage scheme of the failure surface could have achieved a sufficiently low risk 
of failure.  

Appendix 2.1 Safety Factor Fr. Static Equilibrium 
Equation (2.30) provides the condition of equilibrium of the entire slide in terms 
of mobilized strength parameters given in Equations (2.29). Coefficients ti in 
Equation (2.30) are now written in more detail: 
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where 
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If Equations (A2.1) to (A2.3) are substituted into Equation (2.30), the following 
algebraic equation for Fr is obtained: 

 2 0,r raF bF c+ + =  (A2.4) 

where 

 5 2 ,a aa As Cs= −  (A2.5a) 

 5 5 2 2 ,b a b ab As Bs Cs Ds= + − −  (A2.5b) 

 5 2 ,b bc Bs Ds= −  (A2.5c) 

and 

 1 1 int 4 1
tan

( ) ( ) ,b
b w b w

b

A W s F P s F P
F

′ϕ
= − +  (A2.6a) 

 3' ( ),r bB c m s F′=  (A2.6b) 

 int 7 2 2
tan

( ) ( ),
y

b
w b wf w

b

C P s F P P W
F

′ϕ
= + − +  (A2.6c) 

 6' ( ).r bD c m s F′=  (A2.6d) 

The valid root of Equation (A2.4) is 

 ( )2 4 / 2 .rF b b ac a= − + −  (A2.7) 

Appendix 2.2 Global Safety Factor F 
Equation (A2.7), when F = Fr = Fb, is, in fact, the static equilibrium equation. 
Therefore, the value of F should satisfy 

 ( )2( ) 4 / 2 0,G F F b b ac a= − − + − =  (A2.8) 

where the terms a, b, c in (A2.8) should now be calculated for F. 
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Figure A2.1 Numerical determination of global safety factor, F. 
 

Consider in Figure A2.1 the function ( )G F . The solution sought is marked 
as F*. Consider now two F values (F1 and F2) and the corresponding G values 
given by (A2.8). The straight line through (F1, G1) and (F2, G2) intersects the F 
axis at F3, given by 

 2 1 2
3 2

1 2

( )( )
,

( ) ( )
G F F F

F F
G F G F

−
= −

−
 (A2.9) 

which could be generalized, as Fi approaches F* 

 1 2 1
1

2 1

( )( )
.

( ) ( )
i i i

i i
i i

G F F F
F F

G F G F
− − −

−
− −

−
= −

−
 (A2.10) 

Equation (A2.10) provides a recurrent expression to find the target *.F  The 
success of the procedure depends on the shape of function G around *.F  The 
upwards concave shape illustrated in Figure A2.1 is the actual shape of (A2.8) in 
the vicinity of the solution (which, actually, is quite close to the critical value F = 
1). For all the global safety factors calculated the two initial values of Fi to initiate 
the calculation through Equation (A2.10) were F1 = 1 and F2 = 1.01. 
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