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I-7.  Probabilistic Stability Analysis 
(Reliability Analysis) 

Key Concepts 

Sliding stability analysis of concrete or embankment dams does not lend itself well to the 

event tree method in all cases, particularly under normal operating conditions.  That is 

because stability, or lack thereof, results from an interaction between the applied loads, 

the pore pressures or uplift forces, and the shear strength.  There is typically not a linear 

step-by-step progression for these factors, although changes in shear strength and/or 

drainage may occur with time.  Therefore, it is helpful to obtain some numerical 

information about the probability of failure (or unsatisfactory performance).  This 

information can be used to estimate a range in the probability of sliding for event tree 

nodes (see section on Event Trees) representing various loading conditions. 

 

The traditional factor of safety approach provides some insight into failure probability; 

typically conservative input values (shear strength and water pressures) are used in the 

analyses, and if the resulting factor of safety satisfies established criteria, the likelihood 

of failure is low.  How low is another question, and factor of safety by itself is not a good 

indication.  This is seen in Figure I-7-1, which shows the distributions of driving force 

and resisting force for two cases. 

 

 
Figure I-7-1.  Factor of Safety and Failure Probability Comparison. For each case, 

the distance between the peaks can be thought of as a measure of the safety factor, 

whereas the failure probability is proportional to the size of the overlap area. 
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The mean factor of safety (mean resisting force divided by mean driving force) is exactly 

the same for both cases.  However, the probability of failure (area under curves where the 

driving force is greater than the resisting force) is twice as high for the yellow and light 

blue curves (i.e. the orange area plus the green area) than it is for the dark blue and 

lavender curves (orange area). 

 

With the availability of commercial computer analysis tools; now, if you can program a 

deterministic analysis into a spreadsheet, you can use it to perform probabilistic analyses.  

This section describes the basic concepts of performing probabilistic analyses using a 

standard spreadsheet program (Microsoft ® Excel) and commercially available macro 

add-ins for probabilistic analysis (Palisade Corporation’s Decision Tools Suite which 

includes @Risk).  Other companies sell similar software (e.g. Lotus 1-2-3, and Crystal 

Ball by Decisioneering, Inc.).  It should be noted that other analysis programs have the 

capability to perform some probabilistic analysis (e.g. GRAVDAM for concrete gravity 

dams and SLOPE/W for embankment dams).  However, these programs may not have the 

capability to display the sensitivity rank coefficients as described later, and hence some 

additional judgment may be needed when using these programs to perform sensitivity 

analyses.  In addition, SLOPE/W will indicate a probability of failure equal to zero if 

none of the Monte-Carlo calculated factors of safety are less than 1.0.  A reliability index 

is provided, but it is not clear what type of distribution is assumed in its calculation.  

GRAVDAM incorporates a cracked base analysis that must be used with caution (see 

also section on Concrete Gravity Dams). 

 

Using the Monte Carlo approach, the standard deterministic equations for calculating the 

factor of safety are programmed into a spreadsheet, but instead of defining the input 

parameters as single constant values, they are defined as distributions of values.  Thus, 

instead of calculating a single value for the output factor of safety, a distribution of safety 

factors is generated from numerous Monte Carlo trials, whereby each of the input 

distributions are sampled in a manner consistent with their shape for each iteration.  This 

output distribution is used to determine the probability of the safety factor being less than 

the threshold value representing failure or unsatisfactory performance. 

 

For the purposes of this section of the manual, the probability of unsatisfactory 

performance is defined as the probability of a factor of safety (FS) less than 1.0.  

However, other threshold values can be used (or the results tempered with judgment).  

For example, if the dam is particularly susceptible to deformation damage, a larger value 

of safety factor may appropriately define the state at which “unsatisfactory performance” 

occurs (El-Ramly et al, 2002), and the probability of being below that value is calculated. 

Example: Embankment Post-Liquefaction Stability 

Consider the homogeneous embankment dam geometry shown in Figure I-7-2.  The dam 

is in a seismically active area.  What appears to be a continuous clean sand layer, 

approximately four to six feet thick, was encountered in three borings, approximately 

eight feet below the dam-foundation contact.  The minimum corrected (N1)60 blow count 

values encountered in this layer varied from 13 to 15 depending on the boring.  The toe of 

the dike is wet, indicating a high phreatic surface and saturated foundation materials in 

that area.  Piezometers installed in the embankment indicate differences in the phreatic 

surface of about nine feet from one hole to another at the same distance downstream of 
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the centerline.  Given that the sand layer liquefies, what is the probability of post-

liquefaction instability? 

 

 
Figure I-7-2.  Example Embankment Dam Geometry 

 

The critical sliding surface was assumed to follow the liquefied sand layer and intersect 

the upstream face below the reservoir surface at normal full pool, such that no 

embankment remnant would be left to retain the reservoir.  Although there may be slip 

surfaces with a lower factor of safety, some of them may not be critical in the sense that a 

crest remnant capable of retaining the reservoir remains.  It may be appropriate to 

examine other slip surfaces, or use a factor of safety greater than 1.0 to represent 

unsatisfactory performance to cover the possibility of a more critical slip surface.  The 

simplified Bishop method of analysis (Scott, 1974) was programmed into a spreadsheet, 

as shown in Figure I-7-3.  The “allow circular reference” feature in Excel is used to 

iterate to the solution.  Eleven slices were used to define the potential sliding mass. 

 

 
Figure I-7-3.  Bishops Method of Slope Stability Analysis 
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Input variables defined as distributions include: (1) embankment soil unit weight (γ), (2) 

effective stress cohesion of the embankment material (c’), (3) effective stress friction 

angle of the embankment material (φ’), (4) undrained residual shear strength of the 

liquefied sand layer (Su), and (5) water forces at the base of each embankment slice for 

which effective stress parameters were defined.  No test results were available for the 

embankment materials.  Therefore, the mean, standard deviation, maximum, and 

minimum values listed in Design of Small Dams (BOR, 1987) for SC material (see Table 

I-7-1) were used to define truncated normal distributions.  Normal distributions are often 

truncated because the standard normal distribution is unbounded which can result in 

negative values that may not make sense.  The @Risk function for the effective stress 

cohesion, for example, is:  

 

RiskNormal(720,360,RiskTruncate(101,1224)).   

 

The friction angles were converted to tan φ’ for the spreadsheet calculations.  It should be 

noted that in many cases these types of embankment materials are treated as undrained, 

or “friction only” strengths are used based on the shear strength curves.  It should also be 

noted that the strength values from Design of Small Dams likely came from tests on 

compacted laboratory samples and may not be totally representative of saturated 

embankment conditions.  However, both c’ and φ’ from Design of Small Dams are used 

in this example for illustration purposes. 

 
Table I-7-1.  Summary of embankment input properties 

Property Minimum Maximum Mean Standard 
Deviation 

Moist Unit Weight 
(lb/ft3) 

91.1 131.8 115.6 14.1 

c’ (lb/ft2) 101 1224 720 360 

φ’ (degrees) 28.4 38.3 33.9 2.9 

 
For simplicity, moist soil unit weight was used for the entire soil mass, including the 

foundation alluvium.  It is recognized that the saturated embankment unit weight (below 

the phreatic surface) will actually be slightly higher, and the alluvial materials could also 

be somewhat different.  It is also assumed that the effective stress parameters listed in 

Table I-7-1 are equally applicable above and below the phreatic surface. 

 

A variation in phreatic surface of up to nine feet was used to estimate pore pressures and 

forces at the base of each slice where the sliding surface passes through the embankment, 

as shown in Figure I-7-2.  A uniform distribution between the upper and lower values of 

pore pressure (in kips/ft
2
) was assigned, in this case RiskUniform(1.22,1.68), indicating 

any value between the upper and lower value is equally likely. 

 

Finally, undrained residual shear strength of the liquefied foundation sand was estimated 

using the curves developed by Seed and Harder (Seed et al, 2003).  Upper and lower 

bound curves are provided as a function of corrected blow count.  It was assumed that a 

strength midway between the curves represented the best estimate value.  A triangular 

distribution between the upper and lower bound values, with a peak at the best estimate 

value, was used to define this input parameter, RiskTriang(360,630,920) in lb/ft
2
.  It is 

recognized that more recent guidance on the selection of residual strengths exists, but it is 
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expected the Seed and Harder relationship would be slightly more conservative, and for 

simplicity and illustration purposes it was used alone. 

 

After entering the input distributions in the spreadsheet cells, the factor of safety cell is 

selected as the output and the simulation settings are adjusted.  In this case, 10,000 

iterations were specified.  For each iteration, the input distributions are sampled in a 

manner consistent with their shape or probability density function, and an individual 

factor of safety is calculated.  This results in a record of the calculated factors of safety 

for the entire simulation.  It is a simple matter to sort the output factors of safety in 

ascending or descending order using the “sort” command of the spreadsheet program.  

The probability of FS<1.0 is taken as the number of iterations with calculated factor of 

safety less than 1.0 divided by the total number of iterations.  In this case, 228 iterations 

produced a factor of safety less than 1.0.  Therefore, the estimated probability of FS<1.0 

is 228/10,000 or 0.0228. 

 

To help understand which input distributions have the greatest effect on the results, the 

@Risk program prints out a list of ranking coefficients.  Those input distributions with 

the highest positive or negative ranking coefficients affect the results most.  For the 

example just described, the coefficients are shown in Table I-7-2.  It can be seen that the 

drained cohesion of the embankment, c’, and the undrained residual shear strength of the 

sand layer, Su, affect the results the most.  A negative ranking coefficient just means that 

the variable is negatively correlated with the result.  For example, an increase in pore 

pressure results in a decrease in factor of safety, as expected. 

 

Table I-7-2.  Embankment dam sensitivity rank coefficients 

Rank Name Cell Regression Correlation 

1 c' $B$4 0.726344 0.732725132 

2 Su $E$4 0.590719261 0.575407848 

3 γ $H$4 -0.292465055 -0.272376816 

4 φ' $B$5 0.137192535 0.130003719 

5 u slice 2 $D$13 -0.072522808 -0.070526537 

6 u slice 3 $D$14 -0.052556307 -0.051631753 

7 u slice 11 $D$22 -0.020666858 -0.020920598 

8 u slice 1 $D$12 -0.018467738 -0.004675745 

 
Although probabilistic analyses attempt to account for uncertainty, when dealing with 

dam safety engineering applications, there may not be sufficient data to define the input 

distributions with confidence.  Therefore, it may be appropriate to perform sensitivity 

studies using variations to the input distributions.  For the case of the embankment slope 

described above, two additional simulations were run with the following variations: 

 

 Examination of test values for SM soils from Design of Small Dams (BOR, 1987) 

indicates a higher mean and more variation in c’ than for SC material.  Since 

some siltier zones were observed in the embankment during sampling, more 

variation in this parameter may be warranted.  However, the mean value used 

appears to be appropriate.  The standard deviation of the drained embankment 

cohesion, c’, was increased by 50 percent to 540 lb/ft
2
.  In addition, rather than 

truncating the maximum and minimum values for c’ at the soil test values shown 

in Table I-7-1, these values were allowed to vary between 20 and 2000 lb/ft
2
 to 
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account for the fact that the full range of possible values may not have been 

captured by the limited testing. 

 For the second sensitivity analysis, the undrained residual strength of the sand 

layer was taken as RiskTriang(310,560,790) based on an (N1)60 value of 13 

(lower value from the exploration) rather than 14 (mid-range value). 

 

The results of all three simulations are summarized in Table I-7-3.  Increasing the 

standard deviation and upper limit for c’ also increased the location of the output 

distribution centroid, resulting in a higher mean factor of safety.  However, although the 

mean factor of safety increased when more variation was allowed, the probability of 

FS<1.0 also increased.  This is the phenomenon illustrated in Figure I-7-1.  Decreasing 

the residual undrained shear strength of the sand layer decreased the mean factor of safety 

and also increased the probability of FS<1.0, as expected.  These analyses provide a 

quantitative indication of what variation in the inputs actually means in terms of failure 

likelihood for the embankment studied.  They also provide an indication of the likely 

range of failure probability, given uncertainty in the input parameters.  It should be noted 

that even if the embankment remains stable, deformations could result in transverse 

cracking through which seepage erosion could take place.  This must also be considered 

in evaluating the overall risks posed by the dam and reservoir. 

 
Table I-7-3.  Results of embankment post-liquefaction simulations 

Case Mean F.S. Probability F.S.<1.0 

Original Input Distributions 1.38 0.0228 

Increase Std Dev and bounds of 
c’ 

1.44 0.0345 

Lower the best estimate and 
bounds for Undrained Residual 
Strength 

1.32 0.0605 

Example RCC Gravity Dam Stability 

The probabilistic method is equally applicable to sliding of concrete structures.  For 

example, construction of a 160-foot-high roller-compacted concrete (RCC) gravity dam 

in a wide canyon was suspended for winter shut down after the RCC reached a height of 

20 feet.  The following construction season, the cold joint surface of the previous year 

was thoroughly cleaned and coated with mortar, and the remainder of the dam was 

placed.  A gallery was constructed such that the gallery floor would be about 5 feet above 

tailwater during PMF conditions.  A line of three-inch-diameter drains, spaced at 10 feet, 

was angled downstream from the gallery, intersecting the cold joint about 28 feet 

downstream of the axis.  Although a 3.5-foot-high parapet wall was constructed on the 

upstream side of the dam crest, the spillway was sized to pass the probable maximum 

flood (PMF) without encroaching on the wall.  Due to concerns about the strength of the 

cold joint, five six-inch diameter cores were taken one year later.  Two of the five cores 

were not bonded at the lift joint.  The remaining three were tested in direct shear at 

varying normal stresses.  Although only three data points were generated, the results were 

well behaved as shown in Figure I-7-4.  Accounting for about 40 percent de-bonded area 

of the joint, it was determined that the design intent was still met.  Several years later, the 

PMF was revised and a flood-frequency analysis was performed.  Although the new PMF 

did not overtop the dam, it encroached about 2.3 feet onto the parapet wall.  Maximum 
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tailwater did not change significantly.  Additional stability analyses were undertaken to 

evaluate the likelihood of failure under the new loading condition. 

 

 
Figure I-7-4.  Direct shear test results for suspect RCC lift joint 

 

The dam cross section shown in Figure I-7-5 was used in the analysis.  The vertical stress 

at the upstream face is calculated considering the standard equation from mechanics of 

materials: P/A ± Mc/I to account for the vertical load (P) and the moment (M) induced by 

the reservoir for the combined stress condition, as indicated by Watermeyer (2006).  

Initially, uplift along the cold joint is approximated by a bi-linear distribution of 

pressures, varying from full reservoir pressure at the upstream face, to a reduced pressure 

at the line of drains, to tailwater at the downstream face.  The total head at the line of 

drains is defined as Fd * (Reservoir El. – Tailwater El.) + Tailwater El., where Fd is the 

drain factor (1-efficiency).  The pressure head is determined by subtracting the elevation 

of the potential sliding surface from the total head, and the pressure head is converted to 

an uplift pressure for analysis.  The effective stress is calculated along the potential 

sliding plane by subtracting the uplift pressure from the total stress, and where the 

effective stress is calculated to be tensile, no resistance is included for that portion of the 

plane.  Since the locations of potential joint de-bonding are unknown, the cold joint was 

also assumed to be cracked to the point of zero effective stress in this case.  Full reservoir 

pressure was assumed in the crack until it extended past the drains.  Then, approximate 

equations were used to adjust the drain factor to account for the crack length, based on 

research performed at the University of Colorado (Amadei et al, 1991).  These equations 

require the “allow circular reference” feature of Excel to iterate on a crack length.  The 

factor of safety was then calculated from the familiar equation FS = [c’A + (W-

U)tanφ’]/D, where W is the vertical load, A is the bonded area, U is the uplift force, and 

D is the driving force taking into account both the downstream-directed reservoir load 

and the upstream-directed tailwater load.   
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Figure I-7-5.  Cross-sectional geometry of an RCC gravity dam 

 
The equations for limit equilibrium analysis were programmed into a spreadsheet.  Input 

variables that were defined as distributions included the following: (1) drain factor Fd, (2) 

tangent of the intact friction angle on the potentially weak lift joint φ’, (3) intact cohesion 

on the potentially weak lift joint c’, (4) percentage of the joint that is intact, and (5) the 

RCC unit weight.  Table I-7-4 defines the distributions that were used. 

 

Table I-7-4.  Summary of concrete input properties 

Property Distribution Minimum Mode Maximum 

Initial Drain 
Factor, Fd 

Uniform 0.33 n/a 0.75 

φ’ (degrees) Triangular 43 50 57 

Intact c’ (lb/in2) Triangular 50 100 150 

Percent Intact Triangular 43 60 71 

Unit Weight (lb/ft3) Uniform 146 n/a 152 

 

The RCC unit weight, based on measurements from the core samples, had only limited 

variability, and a uniform distribution between the minimum and maximum measured 

values was used. For the other parameters: 

 

 The initial drain factor was taken to be a uniform distribution based on 

piezometer measurements and experience with other concrete dams of similar 

geometry. 

 The coring would suggest that about 60 percent of the lift surface was bonded, 

assuming the cores were not mechanically broken at that elevation during 

drilling.  To estimate a likely range, the percentage was adjusted by assuming the 

drilling of two more holes yielded bonded lifts (upper bound estimate), or yielded 

unbonded lifts (lower bound estimate). 
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 Both the cohesion and tangent friction angle were defined as triangular 

distributions, with the peak or mode of the distribution estimated using the 

straight line fit shown in Figure I-7-4.  High and low values were estimated based 

on experience with other direct shear tests on concrete joints, and interpolating 

other reasonable lines through the data points. 

 

The minimum safety factor calculated from 10,000 iterations was 1.43, with a mean value 

of 2.42.  The sensitivity analysis indicated the cohesion had the largest effect on the 

results as shown in Table I-7-5. 

 

Table I-7-5.  RCC dam sensitivity rankings 

Rank Name Cell Regression Correlation 

1 Intact Cohesion (psi) = $B$17 0.759017659 0.759702063 

2 TAN Friction Angle = $B$16 0.411501707 0.395787559 

3 Percent Intact = $B$18 0.368619688 0.349212338 

4 Drain Factor = $B$15 -0.311968848 -0.314501945 

5 Concrete Density (pcf) = $B$19 0.09730957 0.085434774 

 
Figure I-7-4 suggests that the cohesion and friction angle are negatively correlated.  That 

is, as the friction angle becomes greater, a line that passes through the data would 

intercept the vertical axis at a lower cohesion value, and vice versa.  @Risk allows the 

user to correlate input variables, such that in this case, a high value of cohesion will only 

be sampled with a low value of friction angle, and vice versa.  Since there were limited 

data points upon which to base a correlation, a negative correlation coefficient of 0.8 was 

selected, meaning that the highest cohesion value doesn’t have to be associated with the 

absolute lowest friction angle, but the general trend of the correlation is maintained.  The 

minimum factor of safety calculated with this correlation is 1.79, higher than if the 

correlation is not maintained, indicating that ignoring the correlation would be 

conservative. 

 

Since the factor of safety never drops below 1.0 in any of the Monte Carlo trials, it is not 

possible to determine the probability of FS<1.0 in the same manner as for the 

embankment dam example.  Based on the fact that none of the 10,000 iterations produced 

a FS<1.0, it can only be said that the probability of FS<1.0 is less than 1 in 10,000. In 

some (but not all) cases, this upper bound of failure probability can be improved upon by 

performing more Monte Carlo trials.  However, it is also possible to estimate a 

probability of FS<1.0 by fitting a distribution to the results. 

 

For this, the parameter “reliability index” or β must be introduced.  The reliability index 

is simply the “number of standard deviation units” between the mean value and the value 

representing failure.  Figure I-7-6 shows the output factor of safety distribution for the 

first case discussed for the RCC gravity dam; with cohesion and friction angle treated as 

independent of each other.  Goodness of fit tests indicate the distribution follows a 

normal (bell-shaped) distribution quite well.  The reliability index in this case, relative to 

a safety factor of 1.0, is (FSAVG – 1.0)/σF, where FSAVG is the mean safety factor and σF is 

the standard deviation of the safety factor distribution, or β = (2.425-1.0)/0.3126 = 4.56.  

There is a standard function in Microsoft Excel that allows one to estimate the probability 

of FS<1.0 directly from the reliability index, which is 1-NORMSDIST(β).  In this case, 

using this function produces a probability of FS<1.0 of 2.61 x 10
-6

.  This is a very low 

number, which seems reasonable given the high mean factor of safety and the fact that 
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the minimum value calculated in 10,000 iterations never dropped below 1.4.  In many 

cases, the output factors of safety may not follow a normal distribution, but rather a 

lognormal distribution.  This same method can be used to estimate the probability of 

FS<1.0.  The only difference is that the reliability index is calculated with a different 

formula (Scott et al, 2001), as follows: 
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Where FSmean is the average factor of safety and VFS is the coefficient of variation for the 

factor of safety, equal to the standard deviation divided by the mean. 

 

Note: for very long potential failure surfaces through a given material, the strength 

parameters may not be consistent all along the surface.  The “spatial variability” can be 

accounted for by dividing the surface into representative segments (perhaps based on 

spacing of test information) and defining separate input distributions for each segment. 

 
Figure I-7-6.  Output factor of safety distribution for RCC dam with a fitted 

normal distribution superimposed 

Using Reliability Analysis within a Risk Analysis 

The type of probabilistic stability analysis described in the preceding paragraphs is 

sometimes referred to as “reliability analysis”.  Reliability analysis is typically not used 

as the sole method for estimating failure probability, and the results of such analysis must 

be moderated using engineering judgment.  However, when appropriate models are 

available, they can be a useful tool in estimating response components or “conditional” 

probabilities (probabilities that are conditional upon given loadings or states).  That is, 
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given the loading condition (e.g. reservoir level or earthquake) and state (e.g. liquefied 

foundation), they can help a team estimate the occurrence probability of a particular event 

of a Potential Failure Mode (PFM).    For example, initiation of sliding (e.g. FS<1.0) may 

not equate to failure.  Other events may also need to occur as captured in an event tree.  

Reliability analysis has been used as a tool in the risk analyses for a variety of structures, 

including Folsom Dam (concrete gravity), Upper Stillwater Dam (RCC gravity dam), 

Pueblo Dam (concrete buttress dam), Gibson Dam (concrete arch dam), and Horse Mesa 

Dam (concrete arch dam), as well as for estimating construction risks with an excavation 

at the toe of Mormon Island Auxiliary Dam (embankment). 

Model Uncertainty 

The preceding discussion provides a method for calculating probabilities considering 

uncertainties in the input parameters.  This type of uncertainty is sometimes referred to as 

parameter uncertainty.  However, significant uncertainty also exists as to how well the 

models used in the calculations actually reflect the real situation.  This is sometimes 

referred to as model uncertainty.  Models are just that, limited approximations.  Vick 

(2002) provides additional discussion concerning the limitations of models.  The models 

used in the spreadsheet calculations previously described are two-dimensional 

simplifications of complex three-dimensional problems (e.g. the equation used in the 

RCC dam example does not take into account shear resistance along the sides of the 

critical section).  It may be appropriate to interpret the results of the numerical reliability 

analyses based on subjective degree of belief considerations (see Section on Subjective 

Probability and Expert Elicitation).  For example, if there are significant three-

dimensional effects that tend to help with stability, but a complex three-dimensional 

analysis cannot be easily programmed into a spreadsheet, the calculated failure 

probability can be reduced based on the expectation of beneficial 3-D effects.  Similarly, 

if there are uncertainties in the model with the potential to make things one-sidedly 

worse, such as the possibility that shear strengths will not be mobilized at the same shear 

strains for different materials along the sliding plane, the failure probability can be 

increased over the calculated value.  

Exercise 

Given a mean calculated factor of safety of 1.46 with a standard deviation of 0.26 and a 

standard normal distribution, what is the probability of a factor of safety of less than 1?  

What would be the probability be with a standard deviation of 0.16? 

 

See the attached chart and Z-table for normal distribution.  Note that Z is equivalent to 

the Excel function NORMSDIST(β). 
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This table gives a probability that the outcome or sampled value of a normally 

distributed random variable is less than Z.  Using the table: for example, for a Z of 

1.56 read down the left column to 1.5 then across to 0.06. 

 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 
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