Description & Background

View from downstream of rapid release of the Teton Reservoir after failure during the first filling. The first filling of the reservoir lacked proper planning and unusually high amounts of runoff caused water levels to reach design elevations prior to the completion of the outlet works.

The initial filling of a reservoir is the first test that the dam will perform the function for which it was designed. A carefully managed first filling is crucial to the future success of a dam. According to a study completed by the Bureau of Reclamation on internal erosion failure modes, “approximately two-thirds of all failures and one-half of all dam incidents occur on first filling or in the first 5 years of reservoir operation.” ¹

Dams are constructed primarily to impound and store a large body of water. During the construction of a new dam, diversion channels and cofferdams are used to prevent water from entering the construction area. However, when dam construction is complete, flow to the dam site resumes and the reservoir begins to fill with water. The first filling of a reservoir can be defined as the increase in water level behind the dam from the time construction is complete until it reaches the desired operating level. Depending on the location, type, size, and intended purpose of a dam, the duration and rate of its first filling can vary. Regardless of whether it takes several months, several years, occurs naturally, or with the aid of pumping units, the first filling of a reservoir should be planned, controlled, and closely monitored in order to reduce the risk of failure.

Because the first filling of a reservoir is a critical phase in the life for the dam, it is vital for dam operators and engineers to have as much control over the first filling as possible allowing as much time as needed for appropriate surveillance, including the observation and analysis of instrumentation data. The first filling should be scheduled to occur after construction of the dam and all necessary appurtenances (i.e. spillways and outlet works) have been completed as well as the installation of appropriate instrumentation. Specifications regarding the rate of reservoir rise should be developed to allow the dam to adjust to the forces it will experience as the water level behind it increases. These plans should be documented in a design memorandum that may also include “reservoir regulations during project construction, a water control plan, project surveillance, cultural site surveillance, flood emergency plan, public affairs, safety plan, and transportation and communications.” ²

In addition to dam failure, it is common for design, construction, and/or material deficiencies of a new dam to become apparent during the first filling. For example, evidence of seepage, cracking, and erosion are often noted when the reservoir is raised to new levels for the first time. Inspection and assessment of these potentially hazardous conditions prior to the completion of filling is important and it may be necessary to halt filling or in some cases lower the reservoir before the desired operating water level is achieved to investigate signs of seepage, cracking and erosion. Repairs to any project features that did not function as designed can be re-evaluated and modified to ensure the dam operates according to its original design.


References:

(1) USBR & USACE. (2012).  Internal Erosion Risks.  Best Practices in Dam and Levee Safety Risk Analysis Presentation Series.  Denver:  U.S. Department of Interior, Bureau of Reclamation.

(2)  USACE. (2004).  General Design and Construction Considerations for Earth and Rock-fill Dams, EM 1110-2-2300.  Washington D.C.:  U.S. Army Corps of Engineers.

Summary

Photos

Videos

Case Studies

Anita Dam (Montana, 1997)

Anita Dam is located about 22 miles north of Chinook, Montana, about 5 miles south of the Canadian border. The drainage, which normally flows only in response to snowmelt or heavy rain, is an unnamed tributary...

Learn More

Austin (Bayless) Dam (Pennsylvania, 1911)

Austin Dam (also known as Bayless Dam) was constructed between May and November of 1909 just outside Austin, Pennsylvania, a town of approximately 2,500 people in Potter County.

Learn More

Camará Dam (Brazil, 2004)

Camará Dam is a roller compacted concrete dam in Brazil completed in 2002 and failed during first filling in 2004. The dam was originally designed as an earthen embankment, but the design changed to RCC after the contractor was selected. Irregularities and potential conflicts of interest in the contracting process were allowed by the dam owner.

Learn More

Fontenelle Dam (Wyoming, 1965)

Fontenelle Dam is located on the Green River near La Barge, Wyoming and was originally built in 1964 to provide irrigation water and hydropower for a region of southwest Wyoming. The earthfill embankment structure...

Learn More

Little Deer Creek (Utah, 1963)

Little Deer Creek Dam and Reservoir were conceived as part of the Kamas Water Project and were owned by the South Kamas – Washington Irrigation Company. The dam was designed by the Utah Water and Power Board that also oversaw construction.

Learn More

Mammoth Dam (Utah, 1917)

In 1902 the Price River Irrigation Company proposed to build a dam on Gooseberry Creek about 80 miles SE of Salt Lake City, UT. It would be an earthfill structure with a height of 100 feet. An outlet tunnel through bedrock...

Learn More

Marshall Lake Dam (Colorado)

Routine inspections of Marshall Lake Dam in the early 21st century were relatively uneventful. The 75-foot-tall, 2,400-foot-long high hazard earth embankment dam had relatively flat slopes...

Learn More

Penn Forest Dam (Pennsylvania, 1994)

Penn Forest Dam was constructed between 1956 and 1958 to be one of the main water supply reservoirs for the city of Bethlehem, Pennsylvania. The dam was originally an earthfill embankment structure, stood 145 feet high, 1,930 feet long, and stored 6.4 billion gallons of water...

Learn More

Quail Creek Dike (Utah, 1989)

Quail Creek Reservoir, located in Washington County Utah, is an approximately 40,000 acre-feet water storage project for irrigation, municipal, and industrial use. Design of the project was completed in 1983 with construction beginning in November of that year. The project consisted of...

Learn More

St. Francis Dam (California, 1928)

Located approximately forty miles northwest of Los Angeles, California, St. Francis Dam was a curved concrete gravity dam constructed between 1924 and 1926 in order to provide a storage reservoir for the Los Angeles Aqueduct system...

Learn More

Additional Case Studies (Not Yet Developed)

  1. Wister Dam (Oklahoma, 1949)

Best Practices

Evaluation and Monitoring of Seepage and Internal Erosion

Author: Interagency Committee on Dam Safety
Date Published: 2015

Other Resources

Impacts of the 1928 St. Francis Dam Failure on Geology, Civil Engineering, and America

Author: J. Rogers

Presentation at Missouri University of Science & Technology Meeting

General Design and Construction Considerations for Earth and Rock-Fill Dams, EM 1110-2-2300

Author: U.S. Army Corps of Engineers

Engineering Manual for USACE

Management of Water Control Systems, EM 1110-2-3600

Author: U.S. Army Corps of Engineers

Engineering Manual for USACE

Internal Erosion Risks for Embankments and Foundations

Author: U.S. Bureau of Reclamation & U.S. Army Corps of Engineers

Best Practices from USBR